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Abstract
The essential biological properties of proteins—folding, biochemical activities, and the
capacity to adapt—arise from the global pattern of interactions between amino acid resi-
dues. The statistical coupling analysis (SCA) is an approach to defining this pattern that
involves the study of amino acid coevolution in an ensemble of sequences comprising a
protein family. This approach indicates a functional architecture within proteins in which the
basic units are coupled networks of amino acids termed sectors. This evolution-based
decomposition has potential for new understandings of the structural basis for protein func-
tion. To facilitate its usage, we present here the principles and practice of the SCA and intro-
duce new methods for sector analysis in a python-based software package (pySCA). We
show that the pattern of amino acid interactions within sectors is linked to the divergence of
functional lineages in a multiple sequence alignment—a model for how sector properties
might be differentially tuned in members of a protein family. This work provides new tools for
studying proteins and for generally testing the concept of sectors as the principal units of
function and adaptive variation.

Author Summary
Proteins display the ability to fold, to carry out complex biochemical reactions, and to be
adaptive to changing conditions of selection—the essential characteristics contributing to
organismal fitness. A major goal is to understand how these properties emerge from the
global pattern of interactions between amino acid residues. Here, we describe the princi-
ples and implementation of the statistical coupling analysis (SCA), a method to reveal this
pattern through analysis of coevolution between amino acids in an ensemble of homolo-
gous sequences. The basic result is a decomposition of protein structures into groups of
contiguous amino acids called “sectors” which have been linked to conserved functional
properties. This work provides conceptual and practical tools for sector analysis in any suf-
ficiently well-represented protein family, and represents a necessary basis for broadly test-
ing the concept of protein sectors.
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Introduction
The amino acid sequence of a protein reflects the selective constraints underlying its fitness
and, more generally, the evolutionary history that led to its formation [1]. A central problem is
to decode this information from the sequence, and thus understand both the “architecture” of
natural proteins, and the process by which they evolve. With the dramatic expansion of the
sequence databases, a powerful strategy is to carry out statistical analyses of the evolutionary
record of a protein family [2–6]. With the assumption that the principal constraints underlying
folding, function, and other aspects of fitness are conserved during evolution, the idea is to
start with an ensemble of homologous sequences, make a multiple sequence alignment, and
compute a matrix of correlations between sequence positions—the expected statistical signa-
ture of couplings between amino acids. Using mathematical analyses that explore different
aspects of this matrix [7, 8], studies have exposed tertiary structural contacts in protein struc-
tures (Direct Coupling Analysis, or DCA, [4, 9]), determinants of binding specificity in paralo-
gous protein complexes [5], and larger, collectively evolving functional networks of amino
acids termed “protein sectors” (Statistical Coupling Analysis, or SCA [10]. These different
approaches suggest a hierarchy of information contained in protein sequences that ranges
from local constraints that come from direct contacts between amino acids in protein struc-
tures to global constraints that come from the cooperative action of many amino acids distrib-
uted through the protein structure. Sectors are interesting since they may represent the
structural basis for functional properties such as signal transmission within [3, 6, 11–14] and
between [15–17] proteins, allosteric regulation [6, 15, 18–20], the collective dynamics associ-
ated with catalytic reactions [16], and the capacity of proteins to adapt [21]. In addition, experi-
ments show that reconstituting sectors is sufficient to build artificial proteins that fold and
function in a manner similar to their natural counterparts [22–24]. Thus, the quantitative anal-
ysis of coevolution provides a powerful approach for generating new hypotheses about the
physics and evolution of protein folding and function.

These results imply that together with structure determination and functional measure-
ments, the evolution-based decomposition of proteins should be a routine process in our study
of proteins. However, the analysis of coevolution poses non-trivial challenges, both conceptu-
ally and technically. Conceptually, coevolution is the statistical consequence of the cooperative
contribution of amino acid positions to organismal fitness, a property whose relationship to
known structural or biochemical properties of proteins remains open for study. Indeed, there is
no pre-existing model of physical couplings of amino acids with which to validate patterns of
coevolution. Thus, the goal of coevolution based methods is to produce models for the pattern
of constraints between amino acids that can then be experimentally tested for structural, bio-
chemical, and evolutionary meaning. Technically, the analysis of coevolution is complicated by
both the limited and biased sampling of sequences comprising a protein family. Thus, empiri-
cal correlations deduced from multiple sequence alignments do not always reflect coevolution.
Interestingly, the complexities in sequence sampling can represent both sources of noise and
useful signal in decomposing protein structures, and it is essential to understand these issues in
effectively using methods of coevolution.

The DCA approach for mapping amino acid contacts has been well-described by analogy
with established theory in statistical physics [4]. Here, we present the principles and implemen-
tation of the SCA method for identifying sectors and introduce new tools for understanding
the global patterns of coevolution between amino acid positions. The methods are imple-
mented in an open-source python-based software package that is available to the scientific
community, and illustrated in the main text using the small G protein family of nucleotide-
dependent switches [25, 26] and the S1A family of serine proteases [27, 28]. Technical
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modifications from previous implementations of SCA are indicated in the main text and sum-
marized in the the S1 Table. In prior work, we examined just the broadest level of coevolution
to define sectors—quasi-independent groups of coevolving amino acids [10]. We now go
beyond this top-level decomposition to reveal a more elaborate internal architecture for sectors
in which subgroups of amino acids diverge along functional, and sometimes phylogenetic, sub-
families within the sequence alignment. Overall, this work provides a necessary foundation for
broad testing of the concept of protein sectors.

Results
The SCA begins with an alignment (M sequences by L positions) representing a sampling of
homologous sequences expected to share common selective pressures (Fig 1 and S1 Text, sec-
tion A). Standard sequence database searching algorithms (BLAST, PSI-BLAST, etc.) [29]
together with automated alignment tools (e.g. PROMALS [30]), or available databases of multi-
ple sequence alignments such as PFAM [31] seem to provide suitable sequence alignments.
Since SCA concentrates on conserved features of protein sequences (see below), it is relatively
robust to variations in alignment quality, but will depend on the depth and diversity of sam-
pling of homologous sequences. While an alignment of a protein family is in principle suffi-
cient for an analysis of coevolution, taxonomic and functional annotations and atomic
structures are valuable for interpretation. In this work, we will assume that an atomic structure
is known for at least one sequence in the alignment. We also assume that the alignment has
been subject to a number of pre-processing steps in which positions and sequences with too
many gaps are removed, and a simple sequence-weighting scheme [4] is applied to correct for
the trivial over-representation of high-identity sequences. Each sequence s is given a weight
ws ¼ 1

Ns
, where Ns is the number of sequences with an identity to s above a specified threshold

(80% by default, Box 1). With sequence weights, we can compute an effective number of
sequences in the alignmentM0 = ∑s ws where ws is the weight for sequence s. For computational
efficiency, the alignment is then down-sampled to a limit that preservesM0. More advanced
methods for treating sequence relationships are possible [32] and will require further study.

In this work, we use a PFAM-based alignment of the G protein family (PFAM, PF00071,
version 27.0), and an alignment of S1A serine proteases modified from Halabi et al. [10]. After
the pre-processing steps with default values for thresholds, we obtain a final G protein
sequence alignment of 4978 sequences by 158 positions (3364 effective sequences) and a final
S1A alignment of 1344 sequences by 205 positions (928 effective sequences). In what follows,
we will assume that sequence weights are applied and for simplicity we will simply denoteM0

byM. No calculations below explicitly depend on its value; we shall only assume thatM0 is
large enough to give good estimates of amino acid frequencies (M0 > 100).

An interesting point is that for nearly all alignments, the number of “variables” (L × 20 pos-
sible amino acids) is typically on the order of or greater than the number of “samples” (M).
Thus, it would seem impossible to reliably estimate the correlations between every pair of
amino acids given such limited sampling. However, the sparsity of the constraints between
amino acids observed both statistically [6, 10] and experimentally [33–35] effectively reduces
the dimensionality of the solution, enabling practical approaches. The key issue is to propose a
general approach for recognizing the “basis”—or groups of relevant amino acid positions—in
which this solution largely exists. In SCA, the approach is to weight correlations by the degree
of conservation of amino acids with the intuition that this fundamentally defines the relevance
of features emerging from an evolutionary process. We develop this approach by first defining
the first-order conservation of positions taken independently and then extending to correla-
tions between positions.
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First-order statistics: Position-specific conservation
The evolutionary conservation of a sequence position is estimated from the deviation of the
observed distribution of amino acids at this position from a background distribution expected
by neutral drift. A simple mathematical quantity that captures this concept is

Da
i ¼ f ai ln

f ai
qa

þ ð1$ f ai Þ ln
1$ f ai
1$ qa

; ð5Þ

where f ai is the observed frequency of amino acid a at position i in the alignment and qa is the
background expectation (see S1 Text, section B for derivation). Da

i is known as the Kullback-
Leibler relative entropy [36] and indicates how unlikely the observed frequency of amino acid
a at position i would be if a occurred randomly with probability qa—a quantitative measure of
position-specific conservation. Note that Da

i ¼ 0 only when f ai ¼ qa and increases more and
more steeply as f ai deviates from qa (Fig 2), consistent with intuition that a measure of conser-
vation should non-linearly describe the divergence of the observed distribution of amino acids
from their expected values. An underlying assumption in the derivation of the relative entropy

Fig 1. Three representations of a multiple sequence alignment comprised ofM sequences and L positions. A, ascii text.B, a three-dimensional
binary array xasi, in which xasi ¼ 1 if sequence s has amino acid a at position i, and 0 otherwise; gaps are always set to 0. In this representation, the frequencies
of amino acids at individual positions are f ai ¼ hxasiis &

P
swsx

a
si=M

0, wherews is the weight for each sequence s andM0 = ∑s ws represents the effective number
of sequences in the alignment. Joint frequencies of amino acids between pairs of positions are defined by f abij ¼ hxasixbsjis &

P
swsx

a
six

b
sj=M

0. C, a two-dimensional
alignment matrix Xsn, in which the index s (along rows) represents sequences and the index n (along columns) represents the combination of amino acid and
position dimensions in one, such that n = 20(i − 1) + a. This representation is useful in explaining the relationship between patterns of coevolution between
amino acids and patterns of sequence divergence in the protein family (see Eq (12)).

doi:10.1371/journal.pcbi.1004817.g001
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BOX 1: A SUMMARY OF CALCULATIONS

Alignment preprocessing: An alignment is represented by aM × L × 20 binary array xasi
where s = 1, . . .,M labels the sequences, i = 1, . . ., L the positions, a = 1, . . ., 20 the amino
acids, with xasi ¼ 1 if sequence s has amino acid a at position i and 0 otherwise. Prepro-
cessing steps:
1. Truncate excessively gapped positions based on a reference sequence or by a specified

gap fraction cutoff (default, 0.4);

2. Remove sequences with a fraction of gaps greater than a specified value γseq (default,
γseq = 0.2);

3. Remove sequences r with Sr < Δ, where Sr if the fractional identity between r and a
specified reference sequence (default, Δ = 0.2);

4. Compute sequence weights ws = 1/|{r: Srs > δ}| where Srs if the fractional identity
between r and s (default, δ = 0.8), and truncate positions i with a frequency of gaps
f 0i ¼ 1$

P
s;a wsx

a
si=
P

sws greater than a specified value γpos (default, γpos = 0.2);

5. Recompute the sequence weights ws for the truncated alignment, and compute the fre-
quencies of amino acid at individual positions i as f ai ¼ ð1$ lÞ

P
s wsx

a
si=M

0 þ l=21,
and at pairs of positions ij as f abij ¼ ð1$ lÞ

P
s wsx

a
six

b
sj=M

0 þ l=ð21Þ2, whereM0 = ∑s
ws represents the effective number of sequences in the alignment and where λ is a
small regularization parameter (default, λ = 0.03).

When dealing with large alignments, a sixth step may be added to speed up the subse-
quent calculations:
6. ResampleM00 sequences, withM0 <M00 <M, by drawing them randomly from the

original alignment with weights ws so as to form an alignment with a smaller number
of sequences but an equivalent effective number of sequences (which may slightly
exceedM0, see SI; default,M00 = 1.5 ×M0).

Structure of evolutionary conservation: For a large and diverse alignment (M0 >
100, minimally), the evolutionary conservation of each amino acid a at position i taken
independently of other positions is measured by the statistical quantity Da

i , the Kullback-
Leibler relative entropy of f ai given qa, the background distribution of amino acids:

Da
i ¼ f ai ln

f ai
qa

þ ð1$ f ai Þ ln
1$ f ai
1$ qa

: ð1Þ

q is computed over the non-redundant database of protein sequences. If gaps are consid-
ered, and !q0 represents the fraction of gaps in the alignment, a background frequency
for gaps can be taken as !q0, and then !qa ¼ ð1$ !q0Þqa for the 20 amino acids. Also,

Di ¼
P20

a¼0 f
a
i lnðf ai =!qaÞ defines the overall conservation of position i taking all amino

acids into account. To examine the co-evolution of pairs of amino acids, we introduce a
measure that reports the significance of the raw correlations, Cab

ij ¼ f abij $ f ai f
b
j , as judged

by the degree of conservation of the underlying amino acids:

~Cab
ij ¼ !a

i !
b
j C

ab
ij ; in which !a

i ¼
@Da

i

@f ai
¼ ln

f ai ð1$ qaÞ
ð1$ f ai Þqa

! "
: ð2Þ

The information in the amino acid correlation matrix for each pair of positions is com-
pressed into one number by computing the “Frobenius norm” of the 20 × 20 matrix ~Cab

ij
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is that the sampling of sequences in the alignment is unbiased, a condition that, to varying
extent, is violated by the tree-like phylogenetic structure of real alignments. But without vali-
dated models for protein evolution that can provide a basis for more accurate measures of con-
servation, this choice reflects the simplest definition that satisfies the general principle of
conservation. Finally, Eq (5) gives the conservation of each amino acid a at each position i, but
an overall positional conservation Di can be defined following the same principles (Fig 3A, and
see S1 Text, section C).

Analysis of the spatial pattern of positional conservation generally leads to a simple conclu-
sion: the solvent inaccessible core of proteins and functional surfaces tend to be more con-
served and the remainder of the surface is less conserved (Fig 3A and 3B) [10, 37, 38]. Thus,

for each (ij):

~Cij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a;b

ð~Cab
ij Þ

2

s
: ð3Þ

Analysis of ~Cij involves (a) spectral (or eigenvalue) decomposition of ~Cij, given by
~C ¼ ~V ~D ~V>, (b) determination of k' significant eigenvalues (by comparison with verti-
cally randomized alignments), (c) a transformation of the top k' eigenvectors by inde-
pendent components analysis (ICA), and (d) study of the pattern of residue
contributions along independent components (ICs) 1. . .k'. Distinct groups of positions
can emerge along the ICs for two reasons: (1) the existence of multiple independent sec-
tors, or (2) the hierarchical breakdown of one sector into subgroups that arise from het-
erogeneities in the alignment.

Mapping and sector interpretation: The singular value decomposition (SVD) of the

20 × 20 matrix ~Cab
ij for each (ij), ~C

ab
ij ¼

P20

c¼1 P
ac
ij l

c
ijQ

cb
ij , has the property that l

1
ij ( lcij for

c 6¼ 1 (S1 Fig). That is, the information in the amino acid correlation matrix for each pair
of positions can be compressed into one number, the top singular value (also known as the
“spectral norm”). Besides compressibility, another empirical property of the SVD of ~Cab

ij is

that for a given position i, the top singular vector P1a
ij is (up to the sign) nearly independent

of j (S3 Fig). That is, the amino acids by which a position imakes correlations with other
positions j is nearly the same, and therefore is essentially a property of just position i taken

independently. This defines a projection matrix !Pa
i ¼ !a

i f
a
i =

X
b
ð!b

i f
b
i Þ

2
$ %1=2

with which

we can reduce theM × L × 20 array xasi to anM × L alignment matrix xsi ¼
P

a
!Pa
i x

a
si. The

matrix xsi gives a mapping between the space of positional correlations and the space of

sequence correlations. Specifically, if ~D and ~V are the eigenvalues and eigenvectors of ~Cij,
then

~U ¼ x ~V ~D$1
2 ð4Þ

represents the structure of sequence space corresponding to the positional correlations in
~V . Also, ifW is the transformation matrix derived from the ICA of ~V , then ~Up ¼ W ~U
represents the sequence space corresponding to the ICs of ~Cij. This mapping between posi-
tion and sequence space provides a method to study the origin of the hierarchical pattern
of coevolution that underlies sectors.
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positional conservation in sequence alignments reflects well-known properties of protein
three-dimensional structures.

Second-order statistics: Conserved correlations
The cooperativity of amino acids in specifying protein folding and function implies that the
concept of positional conservation of individual positions should at least be extended to a con-
cept of pairwise conservation, reporting coevolution between positions in a protein family.
Given the alignment, a measure of correlation of the pair of amino acids (a, b) at positions (i, j)
is given by the difference of their joint frequency f abij and that expected in absence of correla-

tion, f ai f
b
j . Computed for all pairs of amino acids in the alignment, this defines a covariance

matrix

Cab
ij ¼ f abij $ f ai f

b
j : ð6Þ

Alternatively, statistical dependency can be quantified by the mutual information, whose origin
is similar to the relative entropy [5, 36]. However, both the covariance matrix and the mutual
information report deviations from independence given the frequencies f ai , and do not take
into account the evolutionary relevance of observing those frequencies. In the current imple-
mentation of SCA, the approach is to perform a first-order perturbation analysis on the multi-
ple sequence alignment in which we compute the correlated conservation of pairs of amino
acids. To explain, consider that many alignments A are available for the same protein family.
We can then define relative entropies Da

i;A—our measure of positional conservation—for each
alignment A, and compute their correlations over the ensemble of alignments by

~Cab
ij ¼ hDa

i;AD
b
j;AiA $ hDa

i;AiAhD
b
j;AiA; ð7Þ

where the angled brackets indicate averages over the A alignments. In practice, many such

Fig 2. Da
i , the measure of amino acid conservation. A, A plot of Da

i as a function of f ai , the amino acid
frequency, and qa, the background frequency here for illustration set to 0.05. See the Supplementary
Information for actual values of q.

doi:10.1371/journal.pcbi.1004817.g002

Evolution-Based Functional Decomposition of Proteins

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004817 June 2, 2016 7 / 26



alignments can be obtained by bootstrap resampling the original alignment [39]; for instance, a
procedure known as “jackknife resampling” consists of successively removing each sequence s
from the original alignment to create a collection ofM sub-alignments. A perturbative expan-
sion of Da

i as a function of f ai for the jackknife resampling process shows that Eq (7) yields a
covariance matrix that has the form

~Cab
ij ¼ !a

i !
b
j C

ab
ij ; ð8Þ

in which !a
i ¼

@Da
i

@f ai
is a function of the conservation of each amino acid at each position (see S1

Text, section D for derivation) [10]. That is, SCA produces a weighted covariance matrix, with
the weighting function ϕ controlling the degree of emphasis on conservation. This definition of
ϕ has the property of rising steeply as the frequencies of amino acids f ai approach one. As a con-
sequence, these weights damp correlations in Cab

ij arising from weakly conserved amino acids

(the gradient of Da
i approaches zero as f

a
i ! qa), and emphasize conserved correlations.

Fig 3. Positional conservation (Di) and the SCAweighted correlationmatrix ~Cij for the G protein family. A-B, The overall positional conservation Di for
the G protein alignment, and a corresponding mapping on a slice through the core of the atomic structure of a representative member of the family (human
Ras, PDB 5P21). The data show that the top 50% of conserved positions (in red) lie at functional surfaces and within the solvent inaccessible core. Thus,
positional conservation maps to an intuitive and a well-known decomposition of protein structures.C-D, ~Cij ordered by primary structure (C), and after
hierarchical clustering (D). The data describe a sparse and seemingly hierarchical organization of correlations—a general result for most protein families.

doi:10.1371/journal.pcbi.1004817.g003
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Another way to understand these weights comes from considering their role in determining
similarities between sequences comprising the alignment. The mathematical principles are
described below, but in essence positional weights !a

i redefine the distance between sequences
in a manner that emphasizes variation at more conserved positions in the alignment (see S1
Text, section I). It is logical that such a “conservation-biased” distance metric between
sequences will provide a better representation of the functional differences (as opposed to his-
torical differences) between sequences. The weighting by !a

i in Eq (8) implements the same
principle applied to the correlations between positions instead of the correlations between
sequences.

In principle, the specific form of ϕ should vary depending on the evolutionary history of the
protein properties that are under consideration; the more conserved the properties of interest
are, the more the weights should emphasize conservation [40]. Indeed, different weighting
functions are possible if mathematical formalisms other than the KL entropy are proposed for
defining positional conservation, or if other approaches than the first-order perturbation anal-
ysis described here are developed. For example, early versions of the SCA method [3, 6]
involved slightly different weights whose technical origins are given in S1 Text, section E.

~Cab
ij is a four-dimensional array of L positions × L positions × 20 amino acids × 20 amino

acids, but we can compress it into a L × Lmatrix of positional correlations by taking a magni-
tude (the Frobenius norm) of each 20 × 20 amino acid coevolution matrix for each pair of posi-
tions (i, j):

~Cij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a;b

ð~Cab
ij Þ

2

s
ð9Þ

See S1 Text, section F and S1 Fig for additional arguments about compressibility of ~Cab
ij .

Fig 3C and 3D shows the ~Cij matrix for the G protein family. As previously reported, the
matrix is heterogeneous, with a small number of positions engaged in significantly higher cor-
relations than most positions (Fig 3C, [6, 10]). Hierarchical clustering makes this heterogeneity
more apparent, and reveals the existence of nested clusters of correlated positions (Fig 3D).
These findings are qualitatively consistent with a sparse, hierarchical, and cooperative pattern
of evolutionary constraints. As we show below, there is also modularity [10], with quasi-inde-
pendent groups of positions emerging from the correlations (the sectors and their subdivi-
sions). Unlike the interpretation of first-order conservation (Fig 3A and 3B), none of these
properties is obvious in either current analyses of protein structures.

Decomposition of the SCA positional correlation matrix

How can we understand the pattern of coevolution in the ~Cij matrix? The existence of correla-
tions(Fig 3C) indicates that treating the amino acid positions as the basic units of proteins is
not the most relevant representation. Instead, we should seek a transformation that re-parame-
terizes the protein into groups of correlated positions that are maximally independent from
each other—a more natural representation that defines the units of evolutionary selection. The
first step in this process is spectral (or eigenvalue) decomposition. Per this decomposition, the
~Cij matrix is written as a product of three matrices:

~C ¼ ~V ~D ~V> ; ð10Þ

where ~D is an L × L diagonal matrix of eigenvalues (ranked by magnitude) and ~V is an L × L
matrix whose columns contain the associated eigenvectors. Each eigenvalue gives the quantity
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of information (variance) in ~Cij captured, and each associated eigenvector in ~V gives the
weights for combining sequence positions into transformed variables (or eigenmodes).

For both G protein and S1A alignments, the histogram of eigenvalues—the spectrum of
~Cij—reveals a few large eigenvalues extending from a majority of small values (Fig 4A and 4B,
black). To estimate the number of significant eigenvalues, we compare the actual spectrum
with that for many trials of randomized alignments in which the amino acids at each position
are scrambled independently [10] (Fig 4A and 4B, red line). This randomization removes true
positional correlations, leaving behind the spurious correlations expected due to finite sam-
pling in the alignment. As is the case for all practical alignments in which the number of effec-
tive sequences is not large compared to the number of amino acids, these spurious correlations
account for the bulk of the spectrum. Indeed, for both alignments this analysis indicates that
just the top few eigenmodes are statistically significant (k' = 4, G protein, and k' = 7, S1A;
see S2 Fig for an analysis of robustness). Thus, the k' associated eigenvectors define a low

Fig 4. Spectral decomposition and ICA. A-B, The eigenspectrum of ~Cij (in black bars) for the G protein (A) and S1A (B) protein families. The eigenvalue
distribution expected randomly is shown in red and provides a statistical basis for defining the k* top eigenmodes for further analysis—conservatively, those
greater than the second random eigenvalue. The first random eigenvalue is ignored since it is a trivial consequence of retaining the independent
conservation of sites in the randomization process [10]. This analysis suggests k* = 4 and k* = 7 for the G and S1A families, respectively.C-D, The top three
eigenvectors for the G (C) and S1A (D) families suggest the possibility of distinct groups of coevolving positions, but illustrates the property that these groups
emerge along combinations of eigenmodes. E-F, Independent components analysis (ICA) optimizes the independence of groups emerging along the
different directions, putting the top three groups of amino acids on nearly orthogonal axes. The group of positions contributing to each IC groups is defined by
fitting an empirical statistical distribution to the ICs and choosing positions above a defined cutoff (default, > 95% of the CDF). Groups of positions in panels
C-F are defined and colored accordingly.

doi:10.1371/journal.pcbi.1004817.g004
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dimensional space in which patterns of positional coevolution can be studied (e.g. Fig 4C and
4D). It is important to note that the precise value of k' is not a fundamental property of a pro-
tein family; it depends on protein size and the number of effective sequences. Nevertheless,
with adequate sampling (M0 > 100) the analysis of sectors seems largely robust to its precise
value (see DHFR tutorial, S3 Text).

Fig 4C and 4D show structure of the space spanned by the top three eigenvectors for the G
protein and S1A families, respectively. In these graphs, the (Euclidean) distance of a position
from the origin reports its overall contribution to the correlations, and the distance between
two positions indicate their degree of correlation: strongly correlated positions appear near-by,
while weakly correlated positions are far apart, or, for the majority that do not make any sub-
stantial contributions to the correlations, clustered near the origin. As a consequence, indepen-
dent sets of correlated positions are expected to cluster into groups of positions at distance
from the origin. When the correlations within these groups are organized hierarchically, these
clusters extend radially with positions at extremity representing the core of the hierarchy, and
successive layers at decreasing distance from the origin representing progressively weaker levels
of the hierarchy. For both protein families, this analysis suggests a few distinct groups of posi-
tions that seem to emerge radially from the origin (Fig 4C and 4D, different colors).

The spectral decomposition is effective for dimension reduction, but the eigenmodes gener-
ally do not provide an optimal representation of groups of coevolving positions. For example,
distinct groups of positions emerge along combinations of the k' top eigenvectors [10]. The
reason is that just decorrelation of the positions by diagonalizing the ~Cij matrix—the essence of
eigenvalue decomposition—is a weaker criterion than achieving statistical independence,
which demands absence of not only pairwise correlations, but lack of any higher order statisti-
cal couplings. In prior work, we managed this problem heuristically, finding combinations of
eigenmodes, excluding the first, that happen to represent quasi-independent groups [10]. Here,
we introduce the use of independent components analysis (ICA [41, 42])—an extension of
spectral decomposition—that computationally addresses this problem. ICA uses numerical
optimization to deduce a matrixW that transforms the k' top eigenmodes of a correlation
matrix into k' maximally independent components (ICs, S1 Text, section G),

~Vp
1)))k' ¼ W ~V 1)))k' : ð11Þ

The bottom line is that the k' ICs (in columns of ~Vp) should now represent a more appropriate
organization of positional coevolution.

In both G proteins (Fig 4E) and S1A proteases (Fig 4F), ICA produces a representation in
which the majority of positions are weakly correlated and cluster near the origin and a rela-
tively small subset of positions comprise quasi-independent groups of amino acids emerging
along separate orthonormal axes (the ICs). The ICs need not be strictly independent, a key
issue in defining sectors that we discuss in detail below. Nevertheless, spectral decomposition
with ICA provides the sort of transformation of protein sequences that we seek—based on
their evolutionary correlations, amino acid positions are regrouped and transformed into new
effective variables (the ICs) that represent collectively evolving modes of the protein under
study.

Sequence-position mapping: An interpretation of the decomposition
How can we examine the relevance of the IC-based decomposition of proteins? A approach
comes from understanding a fundamental mathematical relationship between the pattern of
positional correlations (which defines ICs) and the structure of the sequence space spanned by
the alignment (which defines sequence subfamilies) [43, 44]. The concepts underlying this
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mapping between positions and sequences were presented either heuristically [10] or partially
[17] in prior work; here, we provide a full explanation with new mathematical methods.

Consider the two-dimensional binary matrix representation of an alignment Xsn comprised
ofM sequences by 20L amino acids (Figs 1C and 5A). From Xsn, we can compute two kinds of
correlations: (1) a correlation matrix over rows Srs ¼ 1

L

P
nXrnXsn, which represents the similar-

ity (fraction identity) of each pair of sequences r and s (Fig 5B) and (2) a correlation matrix
over columns Fnm ¼ 1

M

P
sXsnXsm, which represents the joint frequency of amino acids at each

pair of positions (Fig 5C). F and S are intimately related to each other by a mathematical

Fig 5. Themathematical relationship between sequence and positional correlations. A, A binary matrix representation of the alignment Xsn, comprised
ofM sequences by 20 × L amino acids (Fig 1C); the equation shows the singular value decomposition (SVD) of X (Eq (12)). From the alignment matrix, two
correlation matrices can be computed: S, a correlation matrix over rows (B) describing relationships between sequences, and F, a correlation matrix over
columns (C) describing relationships between amino acids; equations show the eigenvalue decompositions of these matrices. By the SVD, X provides a
mapping between the two such that the eigenvectors of F (in V) correspond to the eigenvectors of S (in U). Thus, it is possible to associate coevolving groups
of amino acids to patterns of sequence divergence in the alignment. As described in the text, a similar mapping is possible for positional (rather than amino
acid specific) coevolution (Eq (14)).

doi:10.1371/journal.pcbi.1004817.g005
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property known as the singular value decomposition (SVD). Specifically, if U represents the
eigenvectors of the sequence correlation matrix S and V represents the eigenvectors of the
amino acid correlation matrix F, then

X ¼ UL1=2V>; ð12Þ

where Λ is a diagonal matrix whose entries are (up to a scaling factor) eigenvalues of both S
and F. The key conceptual point is that by the SVD, the eigenvectors of S are a mapping from
the eigenvectors of F, where the “map” is the alignment X itself,

U ¼ XVL$1=2: ð13Þ

This introduces the principle of sequence-position mapping, using the full alignment matrix
X to relate patterns of amino acid correlations (in V) to patterns of sequence divergence (in U).
But, to study the pattern of sequence divergence associated with sectors, we need to make a
similar mapping using the conservation-weighted dimension-reduced coevolution matrix ~Cij

(rather than the unweighted amino acid correlation matrix F). Since ~Cij is a L × L positional
correlation matrix, a sequence-space mapping analogous to Eq (13) requires a dimension-
reduced alignment matrix in which the 20 amino acids at each position are compressed into a
single value. The Supplementary Information describes a new approach for this step, effectively
reducing the alignment xasi from aM × L × 20 array to anM × Lmatrix xsi by projecting the
amino acid dimension down to a single scalar value (S1 Text, section H and S4 Fig). By analogy
with Eq (13), the reduced alignment matrix xsi then defines a mapping between the space of
positional coevolution (in the top ICs of the ~Cij matrix) and the corresponding sequence space.

Specifically, if ~D and ~V are the eigenvalues and eigenvectors, respectively, of the SCA positional
coevolution matrix ~Cij, then

~U ¼ x ~V ~D$1
2 ð14Þ

represents the structure of the sequence space corresponding to the patterns of positional
coevolution in ~V . Furthermore, ifW is the transformation matrix derived from ICA of ~V 1...k' ,
Eq (11), then

~Up ¼ W ~U ð15Þ

represents the sequence space corresponding to ~Vp, the ICs of the ~Cij matrix.
Eqs (14) and (15) give us the necessary tools for interpreting the IC-based decomposition of

proteins. For the S1A family, Fig 6 shows a mapping between the top six ICs and the corre-
sponding sequence space. Sequences are colored by enzymatic function (Fig 6A–6C, the hapto-
globins are non-catalytic homologs of the S1A family), by catalytic specificity (Fig 6D–6F), or
by phylogenetic origin (Fig 6G–6I). The data show that ICs 1–3 correspond to essentially
orthogonal divergences in the S1A protein family. IC1 (but not any of the other ICs) separates
the catalytic from non-catalytic S1A proteins (Fig 6A), IC2 uniquely separates S1A proteins by
their annotated primary (P1 site) catalytic specificity [28] (Fig 6D), and IC3 uniquely separates
vertebrate and invertebrate sequences (Fig 6H). ICs4–6 show more subtle inhomogeneities
with regard to catalytic specificity (Fig 6E and 6F), indicating finer subdivisions of the anno-
tated sequences—well-defined predictions for further study. Thus, the ICs of the ~Cij matrix
contain independently evolving functional units within the S1A protease [10].
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Fig 6. IC-based sequence divergences in the S1A protein family. The panels show scatterplots of sequences in the G protein alignment along
dimensions ( ~Up

1...6) that correspond to sequence variation in positions contributing to each of the top six ICs of the SCA coevolution matrix. The mapping
between positional coevolution to sequence relationships is achieved using the reduced alignment matrix x, as per Eqs (14) and (15). Sequences are colored
either by enzymatic activity (A-C, the haptoglobins are non-catalytic members of the S1A family), annotated catalytic specificity (D-F), or taxonomic origin
(G-I). For each graph, the stacked histograms show the distributions of these classifications for each dimension. Note that trypsin, tryptase, kallikreins, and
certain granzymes have tryptic specificity, and chymotrypsin and most granzymes have chymotryptic specificity. The data show that IC1 specifically
separates sequences by enzymatic activity (A), IC2 separates sequences by catalytic specificity (D), IC3 separates sequences by invertebrate/vertebrate
origin (H), and ICs 4–6 showmore minor variations by catalytic specificity (E-F). These data (1) recapitulate and extend previous observations [10], and (2)
demonstrate the functional relevance of the IC-based decomposition.

doi:10.1371/journal.pcbi.1004817.g006
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Fig 7A–7D shows the mapping between the top ICs of the G-protein family and the corre-
sponding sequence space, colored either by functional sub-type (Fig 7A and 7B) or by taxo-
nomic origin (Fig 7C and 7D). The data show that IC1 and IC2 separate different sub-classes
of the G protein family, suggesting that like in S1A proteases, amino acid motifs in different

Fig 7. IC-based sequence divergences in the G protein family. The panels show scatterplots of sequences in the G protein alignment along dimensions
( ~Up

1...4) that correspond to sequence variation in positions contributing to each of the four ICs of the SCA coevolution matrix. The mapping between positional
coevolution to sequence relationships is achieved using the reduced alignment matrix x, as per Eqs (14) and (15). Sequences are colored either by
annotated functional sub-type of G protein (A-B) or by taxonomic origin (C-D), and the stacked histograms show the distributions of these classifications for
each dimension. The data show that ICs 1 and 2 (A) correspond to distinct sequence divergences of functional subtypes of G protein; for example, IC1
separates the Rho proteins (green) along ~Up

1, and IC2 separates the Rho proteins (green) and a subset of Ras proteins (red) along ~Up
2. In contrast, IC3 and

IC4 are homogenous with regard to G protein subtype (B), and all ICs are essentially homogeneous with regard to phylogenetic divergence (C-D). These
data suggest that IC3 and IC4 are nearly homogeneous features of the G protein family, while IC1 and IC2 are differentially selected for more specialized
properties of G protein subtypes.

doi:10.1371/journal.pcbi.1004817.g007
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ICs can control different functional properties (Fig 7A). In contrast, IC3 and IC4 are associated
with a near homogeneous distribution of functional subtypes, suggesting either neutral or
more fine variations with regard to the broad functional annotations available in this protein
family (Fig 7B).

With the exception of IC3 in the S1A family (Fig 6H), none of the ICs are obviously associ-
ated with the divergence of the main taxonomic groups in the alignment; indeed, all taxa seem
nearly homogeneously distributed over the sequence modes (Up) corresponding to most of the
ICs. Many paralogs of the different functional classes of G proteins and S1A proteases are
found in each type of organism and thus functional divergence might therefore not be expected
to follow the divergence of species. In contrast, ICs are more associated with taxonomic classifi-
cation for the DHFR protein family (S4 Fig and S3 Text), consistent with the fact that this core
metabolic enzyme is encoded by a single ortholog in each genome.

In summary, the sequence-position mapping provides evidence that the ICs of the ~Cij

matrix represent conserved, differentially evolving functional units in proteins. The ICs are not
distinguished by the magnitude of positional conservation (Fig 8), showing that this decompo-
sition of proteins is fundamentally a property of correlations—the second order terms in con-
servation. This finding makes an important statement about the “value added” by studying
coevolution, as opposed to just the first-order conservation of positions. Indeed, it is difficult to
experimentally test the unique value of statistical coevolution by conventional single mutation
experiments, even when conducted on a massive scale [21, 45, 46]. Coevolution implies the
need for higher-order mutational studies, which are difficult to perform quantitatively and
only now starting to become feasible [47]. In this regard, the functionally meaningful, quasi-
independent divergence of proteins along ICs demonstrates the necessity of coevolution in pro-
viding a proper decomposition of protein structure.

Sectors
But, does the existence of k' significant ICs imply k' independent functional units (and there-
fore k' sectors [10])? Not necessarily. Sectors typically have an organization in which the con-
stituent positions can be further broken up into subsets of coevolving positions. One generative
mechanism for this architecture comes from the tree-like structure of the alignment in which

Fig 8. IC-based decomposition and positional conservation. PanelsA-B show stacked histograms of positional conservation (Di) for the S1A and G
protein families, respectively, with positions corresponding to different ICs marked in color as indicated. The data show that consistent with conservation-
based weighting, positions contributing to the top ICs tend to be more conserved than average, but that the distinction between ICs cannot be made by just
magnitude of positional conservation. Thus the IC-based decomposition of sequences is uniquely a property of analyzing correlations.

doi:10.1371/journal.pcbi.1004817.g008
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sequences are partitioned into functional subfamilies along which portions of one sector can
diverge [43, 44]. Thus, each IC could have one of two interpretations: (1) a truly independent
sector associated with a distinct function, or (2) the decomposition of a single sector (repre-
senting one functional property) into separately diverging sub-parts. In this sense, the term
“independent component” is something of a misnomer, but we retain the language here for
consistency with the ICA method.

How can we systematically distinguish these possibilities to deduce the number and compo-
sition of sectors? We follow a simple procedure (see tutorials in S3 Text). First, we fit each IC
to an empirical statistical distribution and identify the positions contributing to the top five
percent of the corresponding cumulative density function (CDF, Figs 4E, 4F and S2). The t-dis-
tribution appears to generally fit the ICs well in all cases studied to date (S5 Fig), and IC com-
position is robust to alignment size when diversity is maintained (S6 Fig). The CDF cutoff is an
adjustable parameter, but 5% seems to agree well with experimental significance in the model
systems studied [16, 21]. We then construct a sub-matrix of ~Cij that contains only the selected
top-scoring positions for the k' ICs, ordered by their degree of contribution to each IC. For the
G protein family, this corresponds to a matrix of 54 positions that contribute to the top four
significant ICs (Fig 9A). This sub-matrix describes both the pattern of “internal” correlations
between positions that make up each IC (the diagonal blocks), and the pattern of “external”
correlations between ICs (the off-diagonal blocks). This representation shows that ICs 1, 2, and
3 display a set of transitive inter-IC correlations, with IC1 correlated to IC2 and IC2 correlated

Fig 9. Sector identification for the G protein family. A shows the IC-based sub-matrix of the ~Cij matrix for the G protein family and andB-C shows the
structural interpretations on a representative member of the family (H-Ras, PDB 5P21 [48]). IC4 represents a nearly independent group of coevolving
positions (sector 2, red), while ICs 1, 2, and 3 show strong inter-IC correlations that suggest classification as a single hierarchically-organized sector (sector
1, different shades of blue).B, Structurally, sector 1 comprises the nucleotide binding pocket (IC1) and the connection to so-called switch domains 1 and 2
which interact with downstream target proteins (ICs 2 and 3). Together, these regions correspond to the known allosteric mechanism in the G protein family.
Sector 2 corresponds to a distinct, largely contiguous group of amino acids with yet unclear functional role. C, The three ICs comprising sector 1 mapped on
the atomic structures of the active GTPγS bound state (PDB 5P21 [48], left panels) and inactive GDP-bound state (PDB 4Q21 [49], right panels) of H-ras.
The data show that ICs 1 and 2 show substantial state-dependent conformational change. These same ICs also show distinct patterns of variation along
different G protein sub-types (Fig 7A), suggesting that variations in these ICs tunes allosteric or substrate binding properties.

doi:10.1371/journal.pcbi.1004817.g009
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to IC3, indicating that IC1–3 together comprise the hierarchically decomposed parts of a single
sector (sector 1, Fig 9A and 9B). In contrast, IC4 shows near-independence from the other ICs,
suggesting that it defines a distinct sector (sector 2, Fig 9A and 9B).

These sector definitions are made exclusively from analysis of the IC-based submatrix of ~Cij,
but correspond to a meaningful spatial architecture in the G protein. These proteins are binary
switches that display different conformations depending on the identity of their bound guanine
nucleotide [25, 26]. The exchange of GTP for GDP triggers two specific conformational
changes: clamping of the so-called switch I loop closer to the nucleotide binding pocket, and
transit of a disordered and weakly interacting surface loop (switch II) to an ordered helix that
is well-packed against the core domain (Fig 9C) [25]. Sector 1 comprises a physically contigu-
ous group of amino acid residues that shows excellent agreement with the nucleotide-depen-
dent allosteric mechanism [50]. The sector is compact in the GTP-bound state but partially
disrupted in the GDP-state (Fig 9B and 9C), a finding consistent with the state-dependent con-
nectivity between the nucleotide-binding pocket and the switch loops. Furthermore, the hierar-
chical breakdown of sector 1 into its constituent ICs 1, 2 and 3 reveals a meaningful structural
organization: IC3 (cyan) defines a physically contiguous network that comprises the nucleotide
binding pocket, IC1 (light blue) defines the packing interactions between switch II and the core
domain, and IC2 (dark blue) represents a set of surface accessible positions (including switch I)
that link to the buried core of sector 1 (Fig 9C). Nucleotide exchange substantially reorganizes
the structure and connectivity of IC1 and 2, but is largely inconsequential for IC3 (Fig 9C).

Consistent with assignment as an independent sector, sector 2 (IC4, red) also comprises a
mostly physically contiguous group within the core of the G protein (Fig 9B); like IC3 of sector
1 (cyan) it shows no nucleotide-dependent conformational plasticity. These results are interest-
ing since IC1 and IC2 (but not IC3 or IC4) are associated with the divergence of functional
sub-classes of G protein (Fig 7A). The data suggest that IC3 (cyan subset, sector 1) and IC4
(sector 2) are global functional modes shared by all members of the G protein family, while ICs
1 and 2 correspond to subsets of sector 1 that are specialized for tuning allosteric or effector-
binding properties within sub-classes of G proteins. These observations represent new hypoth-
eses for further study.

For the S1A family, the IC-based submatrix shows little evidence of inter-IC correlations,
and thus we conservatively treat all ICs as separate sectors (S7 Fig). Each sector corresponds to
a largely contiguous network of amino acids in the protease tertiary structure, a decomposition
consistent with the orthogonal sequence divergences and with previous reports (S7 Fig, and
[10]). Examples of sector analysis for two other protein families—the dihydrofolate reductases
[51] and the class A beta-lactamases [52]—are provided in S8 Fig and in tutorials (S3 Text).

The process of sector identification presented here is heuristic, requiring the judgement of
the practicing scientist to determine the grouping of ICs to form sectors. This reflects that fact
that various degrees of independence between ICs are possible depending on the statistical
nature of selective pressures operating on a protein family. Thus, an automated approach to
interpreting the ~Cij matrix awaits more broad experience with sector analysis in many protein
families. Given the importance of interpreting hierarchical correlation matrices in general (e.g
[53–55]), it seems reasonable that such automation might be achieved with further work.

Discussion
A fundamental goal in biology is to understand the architectural principles of proteins—the
pattern of constraints on and between amino acids that underlies folding, biochemical activi-
ties, and adaptation. An emerging approach is to leverage the growing databases of protein
sequences to statistically infer these constraints from large and diverse ensembles of
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homologous sequences. This strategy has two defining features that distinguish it from the
more traditional direct physical study of specific model proteins. First, by averaging over the
space of homologs, the statistical approach emphasizes the general constraints shared by many
related proteins over those that are idiosyncratic to particular proteins. Second, by quantita-
tively examining the structure of correlations, the statistical approach provides models for the
global pattern of cooperativity between amino acids. SCA adds an extra concept; by weighting
correlations with a function of the evolutionary conservation of the underlying amino acids,
this approach incorporates a measure of their functional relevance [56, 57]. Mathematical
decomposition of the weighted coevolution matrix reveals an internal architecture for proteins
in which the basic functional units are groups of amino acids called sectors. The sector archi-
tecture is consistent with two empirically known but poorly understood properties of proteins:
(i) sparsity, such that only a fraction of the amino acids are functionally critical [21, 58], and
(ii) distributed cooperativity, such that folding and function can depend on the coupled action
of amino acids linking distantly positioned sites [59–61]. It has also revealed a previously
unrecognized feature of proteins:modularity, such that multiple functionally distinct sectors
are possible in a single protein domain [10].

A hierarchical model for sectors
Previous work has introduced the concept of sectors as quasi-independent units of protein
structure that are associated with distinct functional properties [10], but has largely ignored
their internal architecture. This work presents a more refined description in which a sector
may itself be decomposed into a physically contiguous core element (e.g. IC3, Fig 9C), sur-
rounded by peripheral elements (e.g. ICs 1 and 2, Fig 9C) that have the property of differential
variation along functional branches of a protein family (Fig 7A). Thus, we propose a model
that sectors are structural units of function and the ICs define patterns of variation within
these units.

These observations also highlight the practical value of the mapping between positional cor-
relations and sequence subfamilies. When functional divergences between subfamilies are
annotated, the mapping can identify the positions responsible for this divergence. For example,
in the Hsp70 family of chaperones, the existence of subfamilies with known differences in allo-
steric function led to the identification of positions involved in the underlying mechanism
[17]. Turned around, when the role of specific positions in a protein is known, the mapping
can help annotate sequences according to the associated functional property. For example,
sequence divergence within sector positions with known function in the S1A family permitted
classification of the sequence space according to that functional property [10]. In principle,
high-throughput methods for functional annotation of members of a protein family should
permit even more refined mappings between amino-acid variation and phylogenetic or func-
tional divergence, a step towards relating genotype-to-phenotype at the molecular level.

Relationship to other methods
It is valuable to explain the similarities and distinctions of SCA with other analyses of coevolu-
tion in multiple sequence alignments. The direct coupling analysis (DCA [4]) and its various
extensions [9, 62–64] are focused on using coevolution to determine physical contacts between
amino acids within or between protein tertiary structures. As different as this problem may
seem from discovering the pattern of functionally coevolving amino acids, there is a deep rela-
tionship. Recent work shows that the two approaches focus on two extremes of the same hier-
archical architecture of coevolution [7, 8]. SCA focuses on the global modes of coevolution (the
top eigenmodes of a conservation-weighted correlation matrix), and DCA on the minimal
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units of coevolution (the bottom eigenmodes of an unweighted correlation matrix). Thus,
coevolving direct contacts are at one end of the hierarchy and sectors at the other. Consistent
with this, coevolving direct contacts are found within sectors and outside of sectors, but not
bridging two independent sectors [8]. Another approach for analyzing coevolution in protein
alignments is mutual information, which has been successful at predicting the amino acids
responsible for specificity in some protein-protein interactions [5]. The distinction between
this method and SCA lies in the nature of the weighting function ϕ; in essence, the mutual
information method uses flat positional weights (ϕ = 1), which has the effect of emphasizing
more unconserved correlations and may therefore be more appropriate when studying rapidly
diverging functional properties [40]. Taken together, these observations begin to clarify the
relationship of the different approaches, and poses the question of the nature of physical infor-
mation held at various levels of the hierarchy of coevolution, a matter for future experimenta-
tion. From a theoretical point of view, the observations highlight the need for a better, more
unified framework representing the full hierarchy in amino acid correlations in proteins, a key
next goal in advancing the statistical approach to the biology of proteins.

Conclusion
Sector analysis provides a representation of proteins that is distinct from the first-order analy-
sis of positional conservation and that (so far) is not obtained from structure determination or
functional mutagenesis. Thus, it provides a valuable tool for directing experimental studies of
protein folding and function, and ultimately, for formulating a physical and evolutionary the-
ory consistent with the design of natural proteins.

Materials and Methods
Multiple sequence alignments were obtained from previous work [10] or from the PFAM data-
base (release 27.0, accession codes PF00071 (G proteins), PF00186 (DHFR), and PF13354
(class A β-lactamases)), and were subject to pre-processing with default parameter values as
described in Box 1. Reference sequences/structures selected for each family were rat trypsin
(PDB 3TGI), human Ras (PDBs 5P21 and 4Q21), E. coli DHFR (PDB 1RX2), and E. coli TEM-
1 β-lactamase (PDB 1FQG), and with sub-sampling to the number of effective sequences,
yielded the following final alignment statistics: S1A serine proteases (928 effective sequences by
205 positions), G proteins (3366 effective sequences by 158 positions), DHFR (1157 effective
sequences by 151 positions), β-lactamase (497 effective sequences by 200 positions). All calcu-
lations were carried out using a new python implementation of the statistical coupling analysis
(pySCA v6.2), following the algorithms described in Box 1 and in the main text. Step-by-step
tutorials for executing the analysis for the four protein families are provided in the S3 Text and
accompany the toolbox distribution. The pySCA toolbox is available for download through
GitHub (https://github.com/reynoldsk/pySCA), and with online instructions at http://
reynoldsk.github.io/pySCA.

Supporting Information
S1 Text. Statistical Coupling Analysis: supplementary methods and codes.We provide a
more detailed description of the SCA method. The pySCA toolbox is available for download
through GitHub (https://github.com/reynoldsk/pySCA), and with online instructions at http://
reynoldsk.github.io/pySCA.
(PDF)
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S2 Text. Description and usage of the pySCA toolbox. The pySCA toolbox (v.6.1) is a distri-
bution of SCA written in Python and comprises a library of functions (scaTools.py), four
scripts to automate most calculations (scaAnnotateMSA.py, scaProcessMSA.py, scaCore.py,
and scaSectorID.py), and several tutorials written using the interactive python notebook envi-
ronment (iPython notebook). Here we describe installation of this toolbox, its usage via the
scripts, and provide a list of classes and functions in the scaTools.py module with hyperlinks to
access the main code documentation online.
(PDF)

S3 Text. Tutorials.We provide tutorials to describe the sector identification process for four
protein families, with the goal of illustrating several features of the SCA. The tutorials are addi-
tionally available online as html files, and can be downloaded as interactive python notebooks
for use with the pySCA toolbox (https://github.com/reynoldsk/pySCA).
(PDF)

S1 Table. Updates in pySCA 6.1.
(JPG)

S1 Fig. Dimension reduction of
~
Cab

ij . A, The amino acid correlation matrix for positions 47

and 59 (
~
Cab

47;59) in the dihydrofolate reductase (DHFR) alignment and the corresponding singu-
lar value decomposition. The decomposition shows the obvious dominance of the first singular
value (the “spectral norm”). B, Two spatially proximal positions in DHFR chosen for illustrat-

ing properties of the SCA correlation tensor
~
Cab

ij . C, The
~
Cab

47;59 matrix reconstructed from just

the top singular value (
~
Cab

47;59 ¼ Pa1
47;59l

1
47;59Q

1b
47;59Þ, andD, a scatterplot comparing the original

and reconstructed matrices. The data demonstrate the sufficiency of the spectral norm in this
case. E, the spectral norm for all pairs of positions i, j plotted against the Frobenius norm

defined by ð
P

cðl
c
ijÞ

2Þ1=2, a measure of the magnitude of
~
Cab

ij where all the singular values are

retained. The data demonstrate the general sufficiency of the spectral norm.
(JPG)

S2 Fig. Robustness of k'—the number of significant eigenmodes of
~
Cij—to randomization

trials and sampling of sequences. A, The histogram of eigenvalues (the “eigenspectrum”) of
~
Cij for the G protein family (black bars) and for the average of N = 10 trials of random shuffling
of amino acids at each position in the alignment, independently (red line) (reproduced from
Fig 4A, main text). The randomization process exactly preserves the frequencies of amino acids
at each position (the “first-order” statistics), but eliminates all correlations except those due to
finite sampling. Since the first eigenvalue is strongly dependent on the first-order statistics, it is
ignored in determining k'. The cutoff for significant eigenvalues is lrand

2 þ 2s, the second ran-
dom eigenvalue plus two standard deviations computed over N randomization trials. Panels
B-C show the robustness of the cutoff for different values of N, and E-F shows robustness over
different independent trials of sub-sampling the alignment sequences to preserve the same
number of effective sequences (here,Meff = 3366 out of a total of 16294 after alignment pre-
processing steps). See main text and Box 1 for alignment pre-processing and calculation of
number of effective sequences. The analysis shows that k' is highly robust to both number of
randomization trials and to the sampling of sequences in the MSA.
(PDF)

S3 Fig. The pattern of amino acid contributions to positional coevolution. A-C, As

described in S1 Text, section H, S1 Fig, one property of the SCA correlation tensor ~Cab
ij is
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compressibility, such that the information in each 20 × 20 amino acid coevolution matrix for
each pair of positions (i, j) can be represented by a scalar value l1

ij, the top singular value (B).

Per the SVD (A), the top singular value is associated with the top left and right singular vectors
Pa1
ij and Q1bij, which contain the weights for the contributions of amino acids at positions i and

j, respectively. Since coevolution is a symmetric property of amino acids at two positions
(~Cab

ij ¼ ~Cba
ji , we can further simplify the SVD further as in C.D-E, Besides compressibility,

another empirical property of ~Cab
ij is that for any given position i, the top singular vector Pa1

i;j is

essentially invariant over all j; that is the amino acids by which position i coevolves with other
positions j is nearly the same. For example, for three positions within the core of the G protein
(D, positions 82, 125, and 130), the amino acids by which other positions i coevolve with these
positions varies, but the amino acids by which these positions coevolve with other positions j is
nearly the same (E. Thus, it is possible to define a projection for each position (S1 Text. Eq 19)
by which the alignment tensor xasi can be reduced to an alignment matrix xsi (S1 Text, Eq 20).
(PDF)

S4 Fig. Sequence-position mapping for the DHFR protein family. A-F show the positions
comprising the six ICs of the SCA coevolution matrix, respectively, as colored spheres on the
structure of E. coli DHFR (PDB 1RX2), and G-L show stacked histograms of the corresponding
sequence space colored colored by phylogenetic annotation. The data show that ICs 1, 5, and 6
roughly separate eukaryotic and prokaryotic sequences and that the remainder are more
homogeneous with regard to phylogenetic divergence. The significance of these apparent het-
erogeneities will require further investigation, but prior work demonstrates functional and
mechanistic differences between the eukaryotic and prokaryotic members of this protein family
[65].
(PDF)

S5 Fig. Independent components of the G protein family. The independent components
(ICs) corresponding to the four top eigenmodes of the ~Cij matrix. The solid red line is a fit to
the t-distribution, with the cutoff indicated representing the top 95% of the cumulative density
function. The ICs are generally well-fit by this empirical distribution, and serves as a basis for
systematic definition of coevolving positions.
(PDF)

S6 Fig. The robustness of the independent components (ICs) of the
~
Cij matrix to alignment

sub-sampling. Scatterplots of the top four independent components (ICs) for the full align-
ment of G proteins (Meff = 3366) against those for four trials of sub-sampling the alignment to
*15% of sequences. The analysis shows that the composition of ICs (and therefore sector defi-
nitions and sequence projections) are highly robust to the number of effective sequences in the
alignment.
(PDF)

S7 Fig. Sectors in the S1A protein family. A shows the IC-based sub-matrix of the ~Cij matrix
for the S1A family and B-G shows the positions corresponding to each IC on a representative
structure of a member of the protein family (rat trypsin, PDB 3TGI). Each IC shows a hierar-
chical pattern of correlation between constituent positions, with little compelling evidence for
strong inter-IC correlations. Consistent with this, each IC corresponds to a distinct and largely
contiguous network of amino acid contacts in the protein structure (B). ICs 1–3 correspond to
sectors defined in Halabi et al. [10].
(PDF)
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S8 Fig. Sector identification for the DHFR and β-lactamase protein families. Panels A and
C show the IC-based sub-matrix of the ~Cij matrix for the DHFR and the β-lactamase protein
families. The cartoons at right indicate the sector analyses. DHFR displays considerable transi-
tive external correlations between ICs, suggesting a single sector. The β-lactamase family dis-
plays two sectors, one comprising IC2 and the other comprising ICs1, and 3–6. Panels B and D
show the positions contributing to each IC mapped to the protein structure; in each case the
sectors form physically contiguous structural units.
(PDF)
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