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Predicting protein sequences that fold into specific native
three-dimensional structures is a problem of great potential
complexity. Although the complete solution is ultimately 
rooted in understanding the physical chemistry underlying 
the complex interactions between amino acid residues that
determine protein stability, recent work shows that empirical
information about these first principles is embedded in the
statistics of protein sequence and structure databases. This
review focuses on the use of ‘knowledge-based’ potentials
derived from these databases in designing proteins. In
addition, the data suggest how the study of these empirical
potentials might impact our fundamental understanding of 
the energetic principles of protein structure.
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Introduction
The goal in protein design is to determine the rules for
predicting amino acid sequences that will stably fold into
a specific target three-dimensional structure. Two features
make this problem extraordinarily complex at the present
time. First, even small proteins containing on the order of
one hundred amino acids can encode an astronomical
number of potential sequences (~10130). Numbers of this
magnitude clearly preclude exhaustive searching of
sequence space with any computational or experimental
method; instead, nearly all protein design algorithms
implement some techniques for biasing the search towards
regions of sequence space with a higher likelihood of
identifying members of the target fold family. Second, the
scoring (or potential) functions used in assessing the free
energy change upon folding are not well defined at a
physical chemical level and are often unpredictably
imprecise in reporting the experimentally observed ener-
getic properties of proteins. Despite these difficulties at
the level of first principles, substantial progress has recently
been made in protein design through the application of
empirical information from databases of protein sequence
and structure. When extracted in the form of statistical
quantities suitable for use in computational algorithms,
this information is collectively referred to as knowledge-
based potentials, which have been demonstrated to help in
both reducing the combinatorial complexity of searching

sequence space and refining the scoring functions. In this
review, we examine the ways in which knowledge-based
potentials have been used to influence protein design and
suggest that further study of the mechanistic origin of
these potentials may lead to a better understanding of the
physical chemistry of proteins.

Sources of imprecision and complexity in
protein design
The core problem of rational protein design is the con-
struction of a potential function that describes protein
stability. The logical basis for this energy function arises
from the thermodynamic hypothesis that the native
structure of a protein is given by the conformation of
amino acids that minimizes the net free energy of the
molecule [1]. In design algorithms, sequences that mini-
mize the potential function are expected to have the
greatest likelihood of adopting the target structure.
However, despite substantial knowledge of the nature of
the fundamental forces between atoms and of many
high-resolution protein structures, we do not yet have a
general form for this energy function. Many examples
illustrate the difficulty of deducing energy from a protein
structure. The human growth hormone (hGH) buries
many residues at the protein–protein interface upon
binding to the extracellular domain of its receptor (hGHbp),
but most of these contacts show a net free energy change
close to zero upon mutagenesis [2]. Instead, only a few
so-called ‘hot spot’ residues seem to account for most of
the interaction energy. Importantly, neither the pattern
nor the magnitude of energy change at sites are predictable
from either the free or bound structures of the hormone
and receptor [2,3]. Similarly, the GCN4 leucine zipper
makes a set of interhelical salt bridges upon dimerization
[4], but mutagenesis shows that these structurally
observed interactions actually destabilize the complex [5].
From a protein design point of view, our inability to
predict the energetic value of atomic interactions given
an actual atomic structure highlights the serious diffi-
culty in estimating these values from hypothetical
sequences that must be scored during iterations of the
design process.

An additional level of difficulty in specifying the energetics
of a protein fold is the potential for nonindependence of
interactions between amino acid residues in determining
stability. To illustrate this point, Figure 1 shows a schematic
representation of a protein with one residue, i, labeled.
What function gives the total energetic contribution of
site i to the stability of the protein? If site i contributes
only through its intrinsic change in free energy relative to
the unfolded state plus the sum of its pairwise
interactions with immediate neighbors, we would write
the function as:
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(1)

where j represents the few other residues directly inter-
acting with i (colored in blue) and is the so-called
coupling free energy between the pair of residues i and j.
Indeed, many scoring functions in protein design use
such a formalism to calculate site-specific energies
[6–10,11•,12,13].

However, data from many protein systems suggest that
this view is too simple to describe natural proteins; in
some cases, amino acids act in cooperative, higher-order
units in which residues distant in the atomic structure
might nevertheless energetically interact (Figure 1). For
example, hot spot residues in the hGHbp [3], antigen
recognition sites in antibodies [14] and residues at the
active site of serine proteases [15,16] all display thermo-
dynamically coupled interactions with other positions,
some of which are located at sites unexpectedly distant
in the tertiary structure. Structural studies of these and other
proteins [14,17] provide a rationale for explaining such long-
range interactions in proteins: the propagated energetic
coupling of residues seems to reflect the mechanical
coupling of a few amino acid residues, a property necessary
in allosteric and signaling proteins for mediating commu-
nication at a distance.

Although these energetic couplings are often interpreted
as functional elements in folded proteins, recent work has
suggested that these couplings are also determinants of the
stability of the folded state [18,19]. These observations,
based mainly on dynamics measurements, such as hydrogen
exchange rates [20], and on local stability calculations [18],
argue that, although folding stability and functional

properties seem like distinct manifestations of the free
energy, they may be mechanistically inseparable in the
protein structure. From the perspective of protein design,
such distributed networks of thermodynamic coupling
imply that pairwise interactions observed in protein
structures cannot necessarily be taken independently.
Thus, in the absence of prior knowledge about the pattern
or location of thermodynamic coupling, the full potential
complexity of the energetics of site i (Figure 1) is
described by all the possible ways in which site i might
interact with other sites:

(2)

where represents the n-way coupling of residues, for
instance, the influence of residue k on the coupling between
residues i and j, and so on. The potential complexity of
energy parsing in protein structures implied by this
description is extraordinary and certainly experimentally
intractable. Though several lines of evidence suggest
that natural proteins are unlikely to encode much of
this potential complexity [21−23,24•,25,26], it serves to
illustrate that even precise knowledge of the interaction
energy of pairs of atoms in a protein structure taken in
isolation may not suffice in describing protein stability.

Given these sources of imprecision and complexity,
how can we rationally build proteins and why do design
algorithms work? Nearly all scoring functions utilize
empirical information learned from protein sequence,
structure, and function databases to either improve the
calculation of site-specific energies or drastically reduce
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Figure 1

Complexity in the interatomic energy function.
(a) A common simplification in atomistic
energy calculations is to consider the free
energy contribution of one site i (black) to fold
stability to be the intrinsic change at this site
plus the sum of pairwise interactions with
directly contacting amino acids (blue), as
described in Equation 1. This approximation
assumes that interactions between more
distant residues are negligible (gray).
However, the pattern of free energy coupling
between amino acid residues does not always
follow such a simple rule. (b) As has been
measured in several cases, energetic
interactions responsible for structure and
function may be distributed through the
protein in patterns that are not obvious in
atomic structures. If so, the potential for many
combinatorial networks of inter-residue
interactions arises, a possibility that
dramatically increases the complexity of the
atomistic energy function (Equation 2).
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the combinatorial complexity of inter-residue interactions.
As might be expected, the accuracy of these knowledge-
based potentials depends on the statistical quality (size
and unbiased diversity) of the experimental databases.
The dramatic growth in databases of both sequences and
tertiary structures has allowed much progress in the
development of the empirical potentials.

Knowledge-based potentials: information
from protein sequences
One powerful source of empirical information about protein
stability is contained in the statistics of a multiple
sequence alignment of a fold family. Sequence alignments
have typically been used to study the evolutionary constraint
(or conservation) of sites in a protein family, a parameter
given by the distribution of amino acids allowed at each
position. By postulating that this constraint reflects the
physical chemistry underlying protein structure and
function, many studies have attempted to use the pattern
of conservation in designing proteins. For example,
Lehmann et al. [27••] have created hyperstable fungal
phytases, proteins that dephosphorylate phytic acid, by
choosing the most prevalent residue at each position in
a sequence alignment of the family. This ‘consensus
sequence’ approach [28,29] has similarly been used to 
significantly improve the stability of the SH3 domain [24•],
the p53 DNA-binding domain [25] and a GroEL mini-
chaperone [26], and to design a WW domain ‘prototype’ [30].

The successful prediction of sites that control stability
in many different proteins strongly supports the basic
premise of this approach, that the sequence database
usefully encodes information about the global stability of
the fold.

What about the problem of combinatorial complexity in
interactions between residues? Conservation in a sequence
alignment is, by nature, a statistical property of sites taken
as if independent of all others. However, some amino
acid residues may act in concert and knowledge of such
interactions should improve the empirical potential
functions that guide protein design. How can we map the
location and pattern of thermodynamic coupling in proteins?
One sequence-based approach to this problem is to
consider that thermodynamic coupling between two sites
in a protein should mutually constrain evolution at the two
sites if the interaction is important for folding or function.
In principle, this mutual constraint should be encoded in
the covariance of the amino acid distributions at the two
positions in a multiple sequence alignment. Importantly,
this approach assumes nothing about the structural
proximity or mechanism of the coupling; it simply requires
a mutual energetic constraint that forces evolutionary
variance at one site to affect the outcome at the second
site. On the basis of these principles, Lockless and
Ranganathan [23] described a statistical energy function
that measures the coupling between pairs of sites in an
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Figure 2
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A sequence-based method for mapping energetic interactions in
proteins. Evolution of a protein fold occurs through random
mutagenesis with selection constraints imposed by structure and
function. In principle, information about both the importance of
individual sites and the degree of interaction between sites may be
embedded in large and diverse multiple sequence alignments
comprising a protein family [23]. (a) The graph shows the degree of
statistical coupling (∆∆Gstat) between position 76 in an alignment of
274 PDZ domains and all other positions. ∆∆Gstat is an energy-like
parameter that measures the degree of co-evolution between two
positions. The data show that most positions are only weakly coupled
to position 76, a finding consistent with the idea that most positions in
proteins are independent of each other [19,21]. However, a few

positions show large statistical coupling to position 76. 
(b) A mapping of the data shown in (a) onto a representative structure
of the PDZ family. Position 76 (marked with arrow) is located in the
active site of the domain and is involved in mediating interactions with
target peptides (shown in stick bonds). The data show that sites
evolutionarily coupled to position 76 occur both near and far in the
tertiary structure. The color scale ranges from blue (0.33 kT*) to red
(2.33 kT*). (c) The scatter plot shows the correlation of the statistical
energy function derived from sequence analysis with actual
thermodynamic coupling measured through double-mutant cycle
experiments. The data support the view that the statistical coupling
parameter may be a good reporter of the pattern and strength of
inter-residue energetic interactions in proteins.



alignment and tested this method using the PDZ domain,
a small protein interaction module (Figure 2). The statistical
energy function predicted both short- and long-range
thermodynamic couplings in the domain (Figure 2a,b) that
were experimentally verified by mutagenesis (Figure 2c).
Using a roughly similar approach, Larson et al. [31•] have
described an analysis of amino acid covariation in the
SH3 domain and again show the effective prediction of
groups of substitutions that act cooperatively to stabilize
the fold. These studies offer the exciting possibility of
systematically mapping thermodynamic coupling in proteins
at a scale that was previously inaccessible; it will be inter-
esting to see how this information might be used to devise
new functions for protein design that may help better
define Nature’s rules for building proteins.

Knowledge-based potentials: information
from protein structures
Knowledge-based potentials derived from secondary and
tertiary structures of proteins comprise key elements of
nearly every protein design algorithm. Like sequence-
based information, these potentials influence the design
process by correcting deficiencies in the interatomic
energy function and by constraining the complexity of
searching sequence space. Structure-based knowledge
potentials include: rotamer libraries derived from known
protein structures, which restrict sidechain conformations
and provide a backbone-dependent energetic value for each
conformation [32,33]; binary patterning [7,34,35,36•,37–39],
which imposes bias on the character of amino acids allowed
at sites according to knowledge of the hydrophobic or
hydrophilic environment; an implicit solvation model
that accounts for the hydrophobic effect through calculation
of the fractional buried surface area of residues [40] or pairs
of residues [41]; secondary structure propensity [8,42–47];
and libraries correlating backbone structures with small
segments of protein sequences in the Protein Data Bank
[48]. A key aspect of successfully applying knowledge-
based potentials has been empirical adjustment of the
parameters of the energy function to achieve the best
correlation of computed and experimentally observed
properties of the designed sequences [10,49]. Iterative
adjustment of the energy function through theory and
experiment comprises the so-called ‘protein design cycle’,
a method that has now achieved the complete redesign
of a globular protein [6,12].

Several groups have reported successful protein design
through the application of one or more of these knowledge-
based potentials. Sarisky and Mayo [12] have described
several redesigned members of the zinc finger ββα fold.
The algorithm applied (known as ORBIT) searches for
the combination of rotamers on a fixed backbone that
minimizes the global free energy of the fold using an elegant
strategy for reducing computational time [50]. Binary
patterning is included to classify residues as core, surface
or boundary; this information is used to adjust the
chemical character of each position, a manipulation that

helps dramatically reduce the combinatorial complexity
of sequences to be searched. Importantly, the computed
stabilities of the synthetic sequences correlated with the
experimentally determined values, a result suggesting
that the scoring function is physically meaningful. Using
similar structure-based rotamer libraries and empirical
solvation parameters, β turns in two proteins have been
replaced [48] and redesigned to enhance stability [51] or to
stabilize a domain-swapped dimer [52]. In addition,
Isogai et al. employed a method that estimates site-specific
conformational potentials from tertiary structures to rank
amino acid preferences at each site [8,49]; this method was
used to build a synthetic member of the globin fold that
was monomeric, helical and capable of binding heme.
However, the synthetic globin was less ordered than
natural globins and was unable to bind oxygen.

One serious limitation in all of these studies is the need
to fix the geometry of the backbone in order to reduce
computational time searching through combinations of
rotamers. This approximation does not allow mainchain
adjustments to accommodate sequence variation, although
such rearrangements have been experimentally observed
in response to mutations of the protein core [22,53]. Two
approaches have resulted in the design of proteins that
allow alternative backbone conformations, either through
explicitly modeled conformations [7,48,52] or by simply
not constraining the backbone geometry [35,36•,37,54].
In the former approach, the design algorithms also
incorporated information to reduce the computational
complexity, such as residue patterning in coiled-coil motifs
and sidechain rotamer libraries. The resulting proteins
showed excellent agreement between designed and exper-
imental structures [7]. The second approach is remarkable
for the simplicity of its scoring potential. In these studies,
the binary pattern of hydrophobic and hydrophilic
residues was the predominant constraint in the design of
combinatorial sequence libraries [35,36•,37,54]. For
instance, Kamtekar et al. [35] described the design of a
combinatorial library of α-helical proteins by constraining
only binary patterning; many of these proteins exhibit
cooperative unfolding transitions [55•], consistent with the
properties of native structures.

A major future goal in protein design is the rational engi-
neering of functional properties such as binding specificity,
allosteric regulation and catalysis. Towards this goal, two
groups have isolated new functional proteins from
combinatorial sequence libraries that incorporate knowledge-
based design parameters [36•,37]. The two studies employ
similar strategies. Both groups impose a binary pattern on
the libraries corresponding to the pattern of hydrophobic
and polar residues in the parental enzymes, as well as
partial randomization and recombination, whereby
portions of the proteins are independently assembled.
Both studies conclude that functional proteins are rare
in the libraries, a result that highlights the value of
knowledge-based design, but also suggests that additional
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constraints are necessary. In addition, Voigt et al. [56••] have
used protein design to test an algorithm for identifying
sites of productive recombination events and are able to
build β-lactamase variants that support their hypotheses.
One study has now reported the construction of ‘pro-
tozymes’, designed proteins with weak but quantifiable
catalytic power in mediating hydrolysis of p-nitrophenyl
acetate [11•]. The key feature of this work is that the active
site was designed de novo into the surface of Escherichia coli
thioredoxin, a protein with no intrinsic hydrolytic activity.
These studies suggest the exciting possibility that the
fundamental principles of catalysis might now be studied not
only through the analysis of natural enzymes, but through
understanding the engineering principles of building them.
Further improvement of empirical potentials for predicting
the stability of protein structures may allow rapid progress
in this area in the near future.

Conclusions: towards the physical basis of
knowledge-based potentials
Key problems of protein design are imprecision in our
estimation of the net value of amino acid interactions in
folded structures and poor understanding of the complex
ways in which energy can be stored in high-order inter-
actions of residues. The knowledge-based approach provides
a short cut to rational protein design by imposing mecha-
nistically unclear but predictive site-specific potentials
learned from databases of protein structures and sequences.
The success of this approach to date provides significant
motivation for future work in at least two areas. First, to
define the minimal set of rules for building a protein, a result
that may help bound the extraordinary potential complexity
of the protein folding problem. Second, to determine the
mechanistic origin of knowledge-based potentials, which
should help further refine and simplify the potential func-
tions used in design algorithms. Perhaps more importantly,
however, a detailed understanding of knowledge-based
potentials should lead to a better fundamental understanding
of how proteins work.
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