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So, today we do two things: we learn to think qualitatively about behaviors of 
linear dynamical systems and show that these systems are globally 
understandable. 
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Often, for many complex systems, it is hard to get analytic 
solutions or to be intuitive about their behavior.  We 
need a way of “seeing” system behavior.  To do this, let 
us begin with the simple harmonic oscillator...

Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



We can re-write this equation.  We note that the system is fully 
characterized its position and velocity...

Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



....for this system, (x,v) represents a 2D “phase space” in which we can 
see the behavior of the system intuitively.

Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 

The places where the derivatives of our system variables go to zero are 
called the “nullclines”…



Qualitative analysis of system dynamics… 

 

…and the other nullcline?



Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



This is called a “phase portrait”…a way of seeing 
system dynamics.

Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 



Quite reasonably, 

maximum extension at zero velocity, 
and… 

maximum velocity at zero 
displacement..

Qualitative analysis of system dynamics… 

 



Qualitative analysis of system dynamics… 

 One more example…..here is another system of two 
equations.   

How is it different from our previous case?
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Qualitative analysis of system dynamics… 

 One more example…..here is another system of two 
equations.   

How is it different from our previous case?

The top equations are said to be “uncoupled”…
and therefore easy to solve right?
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Qualitative analysis of system dynamics… 

 
given the obvious initial conditions…

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

For a < -1: 

(1) The flow in both directions eventually goes to the origin as 
expected.  The origin is the “fixed point” of the system….the 
only place where there is no flow. 

(2) The origin is stable…slight perturbations from it will make the 
system relax back to the origin.  The origin is called a stable 
node or stable fixed point. 

(3) The flow is faster in the x-direction, and so all the flow lines arrive at 
the origin along the y-direction (the slower one).

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

For -1 < a < 0: 

(1) The flow in both directions still asymptotically goes to the origin 
(2) The origin is still a stable fixed point…slight perturbations from it 

will make the system relax back to the origin.  
(3) But flow is now faster in the y-direction, and so all the flow lines 

arrive at the origin along the x-direction (the slower one).

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

For a > 0: 

(1) The origin is still a fixed point, but the flow only goes to the origin if 
the initial condition starts exactly on the y-axis. Otherwise, it 
diverges to infinity along the x-direction. 

(2) The origin is NOT stable…slight perturbations from it will make the 
system fly off in the x-direction.  

(3) The origin is now called a saddle point…this happens when one of 
the exponentials is positive and one is negative.

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

For a = -1: 

(1) The origin is a stable fixed point, and the flow is equal in both 
directions.  

(2) The origin is now called a symmetric node or a star…

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

For a = 0: 

(1) Now there is a whole row of fixed points….the entire x-axis is a set 
of stable fixed points depending on the initial conditions…a 
set of degenerate nodes. 

We can sketch the flow in the x - y plane for various 
values of a…
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Qualitative analysis of system dynamics… 

 

Seems like a lot of different and maybe “complex” 
behaviors?  Not really….
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We have been working with a system of uncoupled first-order 
differential equations…

Let’s generalize…. 

 



What about the more general case of a system of coupled reactions?

Let’s generalize…. 

 

where a, b, c, and d are constants. 



First, we will introduce a matrix notation to write the system of equations… 

 where a, b, c, and d are constants.  If we use boldface to denote 
vectors….

where… and

thus…



or….

…the uncoupled system is characterized by a diagonalized 
characteristic matrix

Let’s generalize…. 

 



Let’s generalize…. 

 

…the x and y axes are special…. 

(1) they represent directions of the system trajectory as t goes to +/- 
infinity, and… 

(3) they define straight line trajectories along which the system will 
stay forever and show exponential growth or decay



Let’s generalize…. 

 

x(t) and y(t) are the natural functions for this system whose 
additive combination defines the behavior of the system 
for any value of t…



Ok, we have been considering a special case…. 

 

But, what about for a more general second-order linear system? 

Now, what are the “natural” functions whose additive combination help 
us describe the possible behaviors of the system?



But, what about for a more general second-order linear system? 

Well, the straight-line trajectories that define the system 
behavior won’t be as simple as just on the x and y axes 
(since the system is coupled).  How can we find them?



The general solution to second-order linear system…

…a vector of initial conditionsgiven

….where A is a matrix exponential.  How do we 
compute it?



The general solution to second-order linear system…

…we would like to get A into a form that makes it 
easy to compute the matrix exponential.  
What should we do to it?

If then

If                                ?



The general solution to second-order linear system…

…for any square, symmetric, “positive-definitive” matrix, this 
decomposition is always available…the so-called 
“eigenvalue decomposition”

If then

If                                ?



The general solution to second-order linear system…

In this process, a matrix is decomposed into its eigenvalues and 
associated eigenvectors…. 

This is quite generally important and will be covered in the 
mathematics course, but for now, let see how this gives us 
intuitive solutions to our general second order system…

eigenvector 1
eigenvector 2



The general solution to second-order linear system…

…a vector of initial conditionsgiven

….where A is a matrix exponential.  How do we 
compute it?



The general solution to second-order linear system…

…a vector of initial conditionsgiven



The general solution to second-order linear system…

…a vector of initial conditionsgiven

So…the straight-line trajectories we are looking for are 
eigenvectors of A, and each associated eigenvalue gives 
the growth (or decay) rate along that eigenvector…



The general solution to second-order linear system…

…a vector of initial conditionsgiven

So…these so-called “eigenfunctions” are the natural solutions to 
the general case of a linear system….the functions whose 
additive combination defines the behavior of the system 
for any value of t…
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The behaviors of any second order linear system of differential equations as a linear 
combination of its eigenfunctions…an example:

or….

compute the eigenvalues and associated eigenvectors of A…
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compute the eigenvalues and associated eigenvectors of A…

sketch the system behavior….

The behaviors of any second order linear system of differential equations as a linear 
combination of its eigenfunctions…an example:
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does it make sense?

The behaviors of any second order linear system of differential equations as a linear 
combination of its eigenfunctions…an example:



(1) is there a fixed point?  is it stable? 

(2) what is the flow along eigenvector 1? 

(3) what is the flow along eigenvector 2? 

(4) for any initial condition, can you “see” the 
system behavior?

The behaviors of any second order linear system of differential equations as a linear 
combination of its eigenfunctions…an example:



Now for the zoo of possible solutions….

…note that the eigenvalues control the 
behavior of the system



Now for the zoo of possible solutions….

…if



Now for the zoo of possible solutions….

…if



Now for the zoo of possible solutions….

what if the eigenvalues are complex 
numbers?



Some mathematical preliminaries…complex numbers! 
 



Some mathematical preliminaries…complex numbers! 
 

Because of the Euler relationship…one of the 
great formula’s of mathematics…. 

 



Now for the zoo of possible solutions….

what if the eigenvalues are complex 
numbers?

damped, constant, or growing oscillations…. 

 



Now for the zoo of possible solutions….

what if the eigenvalues are complex 
numbers?

remind us of anything? 

 



Now for the zoo of possible solutions….

…same as the linear harmonic oscillator, one 
example of a linear second order system. 

 



Now for the zoo of possible solutions….

what if the eigenvalues are complex 
numbers?

and how would one get this? 

 



Now for a cool thing….

…the trace and determinant of a matrix



Now for a cool thing….

…the eigenvalues are completely determined by the 
trace and determinant…

…or



Now for a cool thing….

…the zoo of all possible behaviors for 
a linear, second-order system



Next time…behaviors at the stochastic limit 
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