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So, today we continue to stay with relatively small-scale linear systems… 
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So, for today, linear systems analysis… 

 The goals will be three-fold: 

(1) Understand the origins if simplicity in linear, time-invariant systems (the general 
regime of most modern engineering) 

(2) Understand the principle of decomposability of linear systems…using a simple 
model of a second order process 

(3) Learn a new way to solve differential equations that makes the concepts of 
linearly and decomposability more intuitive…  
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…this is a basic feedback control circuit; a function 
of the output is fed back to the input to clamp 
output levels. 

 



Linear Systems Analysis 

 

…for example, a system for constant-density growth 
of micro-organisms (a so-called “turbidostat”) 

 



Linear Systems Analysis 

 

…so the theory of LTI systems. 

 



Part 1:  Linear Time-Invariant Systems 

A theme will be to understand the “simplicity” of linear, time-invariant systems.  What does 
“linearity” and “time-invariance” mean exactly? 
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The Convolution Sum (or Integral, for continuous time systems) 
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The Convolution Sum (or Integral, for continuous time systems) 

 

This defines the so-called “impulse response” of our 
system….the output due to an impulse 
stimulus.   
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This defines the so-called “impulse response” of our 
system….the output due to an impulse 
stimulus.   

What then will be there system response to some 
arbitrary function? 

 



The Convolution Sum (or Integral, for continuous time systems) 
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The Convolution Sum (or Integral, for continuous time systems) 

 

The definition of the convolution operator...and the 
power of LTI systems....you can completely 
characterize them by their response to the 
simplest input...the impulse response! 

 



Now...a simple graphical way of understanding convolution...the sliding of two 
functions across each other... 
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Part 2: reduction of high order linear systems...another powerful property of 
linearity... 
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to refresh…as nicely explained in the 
mathematics course yesterday 

 
K. A. Reynolds, “Mathematical Foundations”, 
lecture 1
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Part 2: reduction of high order linear systems...another powerful property of 
linearity... 

 

…so this is a second order, linear, homogeneous 
equation…the equation of motion for a 
harmonic oscillator 

 



Note that our second order system just got 
reduced to two first order differential 
systems!!  

 

Part 2: reduction of high order linear systems...another powerful property of 
linearity... 

 



K. A. Reynolds, “Mathematical Foundations”, 
lecture 1

The solution to the linear, first-order, homogeneous differential equation… 
 

the initial conditions…. 
A(0) = A0 

 

again…as explained in the mathematics 
course yesterday 

 



For example, both binding and dissociation reactions for bimolecular interaction 
at the pseudo-first order limit is well described by a first-order process… 

 

Goldstein and Miller, Biophys. J 65, p.1613



What about a second order system…the case of multistep conformational change… 

 

R*→M%
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…a system of differential equations.  What is the 
solution for A(t) and B(t)? 

 



…the solutions: 

 

What about a second order system…the case of multistep conformational change… 

 

K. A. Reynolds, “Mathematical Foundations”, 
lecture 1

…as demonstrated in the mathematics 
course yesterday 

 



The solution to the linear, first-order, inhomogeneous differential equation… 
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The solution to the linear, first-order, inhomogeneous differential equation… 
 

K. A. Reynolds, “Mathematical Foundations”, 
lecture 1

bunch of algebra, using initial conditions… 

 



Laplace transforms… 

 An approach to solving such equations that leads to some important intuition about linear 
systems… 

 



Why should we do this transformation? 
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The Laplace Transform Method... 
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remember… 

 



The Laplace Transform Method... 

 

In Laplace transform space (F(s)), differentiation and 
integration become just a matter of doing 
algebra and finding the inverse transform... 

 



The Laplace Transform Method... 

 What about the more complicated inhomogeneous 
first order equation? 

 



The solution to the linear, first-order, inhomogeneous differential equation…
the old way… 

 

K. A. Reynolds, “Mathematical Foundations”, 
lecture 1

bunch of algebra, using initial conditions… 

 



By the Laplace transform approach... 
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By the Laplace transform approach... 

 

Lookup inverse transforms... 

 



By the Laplace transform approach... 

 



By the Laplace transform approach... 

 

Much simpler approach... 

 



But…also an approach to “see” the reduction of a high-order system to a 
combination of first-order systems... 

 

Part 3:  Back to decomposability of linear systems… 

 



In keeping with our process-centric view, this of a first order system as a “process” 
that converts an input into an output. 

The process has a characteristic function…the so-called “transfer function”.  It is 
fundamentally defined by the response to an impulse input. 

 



Thus, outputs are predictable from just convolutions of 
the impulse response with the input function… 

 







Let’s use this to study our two cases...a first order 
system (single exponential) and our second 
order system (a double exponential)... 

 



So, the first order system can be thought of as a 
system driven by an impulse stimulus... 

 





So, a second order system is a series of two first 
order systems….a basic property of linearity! 

 



This reduction of a high-order system to a combination of first-order systems is a 
fundamental property of linear systems... 

 



So...linear time-invariant systems are “simple” (not complex) for two reasons: 

(1) They have the property that the impulse response fully characterizes their 
behavior.  All responses to more complex inputs are just a convolution of the 
impulse response (the transfer function) with the input function. 

 



So...linear time-invariant systems are “simple” (not complex) for two reasons: 

(1) They have the property that the impulse response fully characterizes their 
behavior.  All responses to more complex inputs are just a convolution of the 
impulse response (the transfer function) with the input function. 

(2) Higher order systems can always be broken down into a serial process of linked 
first order systems.... 

 



Next time…a full analysis of n = 2 linear systems…and graphical tools 
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Next, the obvious mathematical model…. 

 

How do we solve this differential equation?  Well here is one 
way…. 

 



We make a proposal…. 

 

The idea is to think of this system as having two parts to its solution….one 
that looks like its “natural” response (the homogeneous solution) and 
one that looks like the input into it (the particular solution).  Let’s look 
at the particular solution first… 

 





And now for the “homogeneous solution”... 



So, putting it all together... 

 



So, putting it all together... 

 


