Lecture 2: Linear Systems - Part 1
Winter 2016

R. Ranganathan

Green Center for Systems Biology, ND11.120E

Linear time-invariant systems, Linear ODEs, and the power of decomposability

Joseph-Louis LaGrange 1736-1813

Pierre-Simon LaPlace 1749-1827

Joseph Fourier 1768-1830

So, today we continue to stay with relatively small-scale linear systems...

	$\mathrm{n}=1$	$\mathrm{n}=2$ or 3	$n \gg 1$		continuum
Linear					
	exponential growth	second order	electrical circuits	'	Diffusion
	and decay	reaction kinetics	molecular dynamics		Wave propagation
	single step	linear harmonic			
	conformational	oscillators	systems of coupled		quantum
	change		harmonic oscillators		mechanics
		simple feedback			
	fluorescence emission	control	equilibrium thermodynamics		viscoelastic systems
		sequences of			
	pseudo first order	conformational	diffraction, Fourier	'	
	kinetics	change	transforms		
Nonlinear	fixed points bifurcations, multi stability		systems of nonlinear oscillators	I	Nonlinear wave propagation
		anharmomic oscillators			
		relaxation	non-equilibrium		Reaction-diffusion in dissipative systems
	irreversible hysteresis	oscillations	thermodynamics		
		predator-prey models	protein structure/ function		
	overdamped				Turbulent/chaotic flows
	oscillators	van der Pol	neural networks	'	
		systems		,	
			the cell	'	
		Chaotic systems			
			ecosystems		

The goals will be three-fold:
(1) Understand the origins if simplicity in linear, time-invariant systems (the general regime of most modern engineering)
(2) Understand the principle of decomposability of linear systems...using a simple model of a second order process
(3) Learn a new way to solve differential equations that makes the concepts of linearly and decomposability more intuitive...

Linear Systems Analysis

First. Lot's saxyder a chang of perspective for tody abas how we regard basic reactions. We will shang from the usual state-contric to a procoss.centric vow:

Linear Systems Analysis

First. Wet's cancer a chang of perspective for today about how we regard basic reactions. We will shang from the usual state-contric to a process. centric view:
A. Folding

First. Wet's cancer a chang of perspective for today about how we regard basic reactions. We will shang from the usual state-contric to a process. centric ven:
B. Con \triangleq
C. Served como Δ

$$
h^{h} \rightarrow R \rightarrow I_{1} \rightarrow I_{2} \neq I_{3} \rightarrow n \quad \Rightarrow \delta(1) \rightarrow h_{h_{1}} \rightarrow h_{2}() \rightarrow \ldots
$$

move gevoonlly. could be gaits sumplox circuits....

Linear Systems Analysis

First. Let's consider a chang of perspective for tody about how we regard basic rations. We will shang
state-centric to a process. centric vow:

...this is a basic feedback control circuit; a function of the output is fed back to the input to clamp output levels.

Linear Systems Analysis

First. Wet's consoler a chang of perspective for tody about how we regard buss rations. We will shang from the usual state-centric to a process -centric vow:

...for example, a system for constant-density growth of micro-organisms (a so-called "turbidostat")

Ho: can we understond/predat the beharion of thase systoms? Well, if the systoms are linear and time invarnant, there is a powerfoll theomy
so...
(1) dofnoitions
(2) properther of liveority and time inownance
(3) comvelution theorem
(4) The baploce trowspan meithod [for somplirity and intuition]
(5) Three examples:
 first ader sucull orden simple feedbuel system.
...so the theory of LTI systems.

Part 1: Linear Time-Invariant Systems

A theme will be to understand the "simplicity" of linear, time-invariant systems. What does
"linearity" and "time-invariance" mean exactly?

What does "linearity" and "time-invariance" mean exactly?

Linearity implues a prineiple ralled superposition: $I_{6} y_{1}(-)$ is the arteosit of a systen it impont $y_{1}(\mathcal{H})$ and $y_{2}(f)$ is the responss to $x_{2}(4)$, Ihen:
(1) $x_{1}(t)+x_{2}(t) \rightarrow y_{1}(t)+y_{2}(t)$ [addifivit]
(2) $a, x_{1}(t) \longrightarrow a \cdot y_{1}(t) \longrightarrow$ [scaling or homogowity]

What does "linearity" and "time-invariance" mean exactly?

Linearity implies a principle called superposition: $I_{6} y_{1}(-)$ is the outpost of a system to import $y_{1}(H)$ and $y_{2}(\mathcal{H})$ is the responses to $x_{2}(4)$, When:
(1) $x_{1}(t)+x_{2}(t) \rightarrow y_{1}(t)+y_{2}(t)$ [add, t_{1} it]
(2) $a, x_{1}(t) \longrightarrow a \cdot y_{1}(t) \longrightarrow$ [scaling or homogowerity]

So... If input is

$$
x(1): \sum_{k} a_{k} x_{k}(t)=a_{1} x_{1}(1)+a_{2} x_{2}(-1)+\cdots
$$

outport will be:

$$
y(t)=\sum_{k} a_{k} y_{k}(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)+\cdots
$$

This is superposition ... the output is a weighted sum of responses to independent inputs.

What does "linearity" and "time-invariance" mean exactly?

Time invanane is just flat the system behaves the same our five. So...
(i) the response to an input is the same regardless of time when the input comes or...
(2) It $x(t) \rightarrow y(t)$ then..

$$
x(t-\tau) \rightarrow y(t-\tau)
$$

What does "linearity" and "time-invariance" mean exactly?

Time invanave is just that.... the system behaves the same our time. So ...
(i) the response to an input is the same regardless of time when the input comes or...
(2) It $x(t) \rightarrow y(t)$ then...

$$
x(t-\tau) \rightarrow y(t-\tau)
$$

Thew two properties underlie the concept of the convolution integme.... we will taker that in steps ...

The Convolution Sum (or Integral, for continuous time systems)

Step: The impulse fernetion. The first concept we hoed is that of representing any arbitrong input function as a series of scaled, time shifted elemeriteng Auctions called impulses ...

In discretely tire...

$$
\delta[n]= \begin{cases}0 & n \neq 0 \\ 1 & n=0\end{cases}
$$

The Convolution Sum (or Integral, for continuous time systems)

Step: The impulse fernetion. The first concept we hoed is that of representing any arbitrong input function as a series of scaled, time shifted elemeriteng Auctions called imponises ...

In continues five...

$$
\delta(t)=\lim _{\Delta \rightarrow 0} \delta_{\Delta}(t)
$$

Siep? An mpout funstrion...
Agave to stant. in diserele trace...

$$
\begin{aligned}
x(n)=\ldots & +x(-3) \delta(n+3)+x(-2) \delta(n+2) \\
& +x(-1) \delta(n+1)+x(0) \delta(n) \\
& +x(1) \delta(n-1)+\cdots
\end{aligned}
$$

Shep? An mpat funstion...
Agave to stant, ive discrele frues...

$$
\begin{aligned}
x(n)=\ldots & +x(-3) \delta(n+3)+x(-2) \delta(n+2) \\
& +x(-1) \delta(n+1)+x(0) \delta(n) \\
& +x(1) \delta(n+1)+\ldots
\end{aligned}
$$

II
"

$$
x(-3) \delta(n+3)
$$

$$
x(-2) \delta(n+2)
$$

4

$$
x(-1) \delta(n+1)
$$

$$
+
$$

$\times(0)$

$$
\begin{aligned}
& \delta(0) \\
& t \\
& \vdots
\end{aligned}
$$

Siepe An mput funstron...
Agave to stant, ive discrele frues...

$$
\begin{aligned}
x(n)=\ldots & +x(-3) \delta(n+3)+x(-2) \delta(n+2) \\
& +x(-1) \delta(n+1)+x(0) \delta(n) \\
& +x(1) \delta(n+1)+\ldots
\end{aligned}
$$

II
"

$$
x(-3) \delta(n+3)
$$

$$
x(-2) \delta(n+2)
$$

$$
4
$$

$$
x(-1) \delta(n+1)
$$

$$
+
$$

$\times(0)$

$$
\text { or ... } x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)
$$

The Convolution Sum (or Integral, for continuous time systems)

This defines the so-called "impulse response" of our system....the output due to an impulse stimulus.

The Convolution Sum (or Integral, for continuous time systems)

This defines the so-called "impulse response" of our system....the output due to an impulse stimulus.

What then will be there system response to some arbitrary function?

The Convolution Sum (or Integral, for continuous time systems)
seal Now we give never system an int function...

n

so...
$y(n)=x(0) \ln (0)+x(1) \ln (n-1)$

The Convolution Sum (or Integral, for continuous time systems)
so...

$$
y(n)=x(0) h(0)+x(1) h(n-1)
$$

Hex, we used both the promeciple of linearity and time invariance!
\rightarrow the eel salad outport to each input impure was summed
the response was the same (Hoogh siculad) tore nth time shift.

The Convolution Sum (or Integral, for continuous time systems)
so...

$$
y(n)=x(0) h(0)+x(1) h(n-1)
$$

Hex, we uned both the promecuple of linearity and tive invariance!
\rightarrow the oel saled outpert to each input impule was summed
the respous was the same (Moogh scaled) fore ach time shiff.
more provelly...

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \quad \text {... this is the convoteaticu sumn } \underline{\text { suprposinion swom }}
$$

for 171 systews, this gives the sutpot $(y(x))$ to any apbithesty inpot (x wis) ginen knowledy of its impolse responie $(h(n))$.

Thus is a majer result of lineores sytrous analy is ... the enspance of an Iti syptem is complotity dafied ify its impulie respanie.

The Convolution Sum (or Integral, for continuous time systems)
mover promelly...

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(k-k) \quad \ldots \text { this is the convotuticen surn wix }
$$

for $L T 1$ systews, this gives the sutpat $(y(x))$ to any avbithery unpot (x (wi) ginen knowlealy of its impolse respanie ($h(n)$).

Thas is a majer result of limenes sytruss analyis ... the respanie of an
itt syptem is comploltey defied ify its impulie respanie.

In continuos time...

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& y(t)=x(t) * h(t)
\end{aligned}
$$

Tive convolutious intrgeml.

The definition of the convolution operator...and the power of LTI systems....you can completely characterize them by their response to the simplest input...the impulse response!

Now...a simple graphical way of understanding convolution...the sliding of two functions across each other...

n(0-k)
$\rightarrow 0.5$
$\rightarrow 2.5$

$\rightarrow 2.5$

$\rightarrow 2.0$
$\rightarrow 0$
this is $y(n)$!

Now...a simple graphical way of understanding convolution...the sliding of two functions across each other...

Part 2: reduction of high order linear systems... another powerful property of linearity...

$$
\frac{d^{2} x}{d t^{2}}+\alpha \frac{d x}{d t}+\beta x=0 \quad \text { [Homagevene. linear, } z^{n d} \text { order] }
$$

Part 2: reduction of high order linear systems...another powerful property of linearity...

$$
\frac{d^{2} x}{d t^{2}}+\alpha \frac{d x}{d t}+\beta x=0 \quad \text { [Hemogenew, linear, } 2^{n f} \text { order] }
$$

A delfermatiol eqpesstion is an equation with derivatives in if. In the general case:

$$
g\left[f(t), \frac{d f}{d t}, \frac{d^{2} f}{d t^{2}}, \ldots ., \frac{d^{*} f}{d t^{n}} ; t\right]=h(t)
$$

to refresh... as nicely explained in the mathematics course yesterday

Part 2: reduction of high order linear systems...another powerful property of linearity...

$$
\frac{d^{2} x}{d t^{2}}+\alpha \frac{d x}{d t}+\beta x=0 \quad \text { [1tom.genem. I linear, } 2 \text { №dder] }
$$

But... the simplest case is a linear, $1^{\text {st order, homogenvews ane: }}$

$$
\frac{d y}{d t}=f(t, y)
$$

 a derwatur of it.

Part 2: reduction of high order linear systems...another powerful property of linearity...

$$
\begin{aligned}
& \text { This que lens seal phys it } 0 \text { meaning: } \\
& \text { Newhoms low says: } \quad \sum f=m a \\
& =m \frac{d^{2} x}{d t^{2}} \\
& -k x-c \frac{d x}{d t}=m \frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

...so this is a second order, linear, homogeneous equation...the equation of motion for a harmonic oscillator

Part 2: reduction of high order linear systems...another powerful property of linearity...

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\alpha \frac{d x}{d t}+\beta x=0
\end{aligned}
$$

One way to side it is to make two new rarcubles:

$$
y_{1}=x \quad y_{2}=\frac{d x}{d t}
$$

$$
\begin{aligned}
\frac{d y}{\frac{d y_{1}}{d t}} & =y_{2} \\
\frac{d y_{2}}{d t} & =-\alpha \frac{d x}{d t}-\beta x \\
\frac{d y_{2}}{d t} & =-\alpha y_{2}-\beta y_{1}
\end{aligned}
$$

Note that our second order system just got reduced to two first order differential systems!!

The solution to the linear, first-order, homogeneous differential equation...

$$
\begin{aligned}
& \frac{d A}{d t}=-k A \\
& \frac{1}{A} d A=-k d t \quad \rightarrow \text { sepante varathe } \\
& \begin{array}{l}
\int_{A_{0}}^{A} \frac{1}{A} d A=\int_{0}^{t}-k d \tau \\
\left.\ln A\right|_{A_{0}} ^{A}=-\left.k \tau\right|_{0} ^{t}
\end{array} \\
& \begin{array}{l}
\ln A-\ln A_{0}=-k t \\
\ln \left[\frac{A}{A_{3}}\right]=-k t
\end{array} \\
& A=A_{0} e^{-k t}
\end{aligned}
$$

For example, both binding and dissociation reactions for bimolecular interaction at the pseudo-first order limit is well described by a first-order process...

$$
R \xrightarrow{\delta(t)} A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} M
$$

Rhodopsin
$A(0)=A_{0}$
$B(C)=0$
...a system of differential equations. What is the solution for $\mathbf{A}(\mathrm{t})$ and $\mathbf{B}(\mathrm{t})$?

What about a second order system...the case of multistep conformational change...

$$
\begin{array}{ll}
\text { i) } \frac{d A}{d t}=k_{1} A & A(0)=A_{0} \\
\text { ii) } \frac{d B}{d t}=k_{1} A-k_{2} B & B(0)=0
\end{array}
$$

...the solutions:

...as demonstrated in the mathematics course yesterday

The solution to the linear, first-order, inhomogeneous differential equation...

$$
\begin{aligned}
\frac{d B}{d t}=-k_{2} B+k_{1} A, \text { whine } & A=A_{0} e^{-k t} \\
B(0) & =0
\end{aligned}
$$

The solaithon is going to be a sum of the hamogenead solution and the partenlar solution to the specitis import.

$$
B(t)=\frac{B_{p}(t)}{L}+\frac{B_{h}(t)}{L \text { the particular solution. }} \text { the hernoges socotion } \frac{d B}{d t}=-k_{E} B
$$

Now, $B_{p}(f)$ is going to look kibe the import, So ... $B_{p}(t)=C A_{0} e^{-l, t}$. All we need to b.goere ant is wheaties C.

The solution to the linear, first-order, inhomogeneous differential equation...

$$
\begin{aligned}
\frac{d B}{d t}=-k_{2} B+k_{1} A, \text { whine } & A=A_{0} e^{-k t} \\
B(0) & =0
\end{aligned}
$$

The solution is going to be a sum of the harogerueae solution and the partenlar solution to the specitis mort.

$$
B(t)=\frac{B_{p}(t)}{\longrightarrow}+\frac{B_{h}(t)}{L}
$$

bunch of algebra, using initial conditions...

$$
B(t)=\frac{A_{0} k_{1}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]
$$

Laplace transforms...

An approach to solving such equations that leads to some important intuition about linear systems...

Laplace transforms...

Given any antinuacsly differentiable function $f(t)$, we define the Laplace tromeform of $f(t)$:

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

S.... this is a transformation of $f(t)$ so that:

$$
f(t) \stackrel{\alpha}{\stackrel{\alpha}{\alpha^{-1}}} F(s)
$$

Why should we do this transformation?

Laplace transforms...

Good reasons for the \mathcal{Z} :

$$
6
$$

(1) Solving diffonntial equentions con be much easier, and offer with just looleup tabled.
(2) Initial conditions are carried in the process of the solution.
(3) with move study, you will learn that they lead to very intuitive terms of deferential equations.

The Laplace Transform Method...

Some useful Laplace transforms:

$$
\begin{aligned}
f(t) & =e^{-k t}: \quad \text { Then... } \\
& \mathcal{L}\{f(t)\}=
\end{aligned}
$$

The Laplace Transform Method...

Some useful Laplace transforms:
(1)

$$
\begin{aligned}
& f(t)=e^{-k t}: \text { Then... } \\
& \mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-k t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(k+s) t} d t \\
& =-\left.\frac{1}{l+s} e^{-(k+2) t}\right|_{0} ^{\infty} \\
& =\frac{1}{s+k}
\end{aligned}
$$

The Laplace Transform Method...

Some useful Laplace transforms:
(1)

$$
\begin{aligned}
& f(t)=e^{-k t}: \text { Then... } \\
& \mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-k t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(k+s) t} d t \\
& =-\left.\frac{1}{l+s} e^{-(k+2) t}\right|_{0} ^{\infty} \\
& =\frac{1}{s+k}
\end{aligned}
$$

So... | $f(t)$ | $f(s)$ |
| :--- | :--- |
| $e^{-k t}$ | $\frac{1}{s+k}$ |

The Laplace Transform Method...

$$
\begin{aligned}
& f(t)=t \quad ; \text { Then } \cdots \\
& F(s)=\int_{0}^{\infty} t e^{-s t} d t
\end{aligned}
$$

The Laplace Transform Method...
(2)

$$
\begin{aligned}
& f(t)=t \quad ; \text { Then } \cdots \\
& F(s)=\int_{0}^{\infty} t e^{-s t} d t
\end{aligned}
$$

To solve this, we use the old integroite by parts rule:

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Ins over cones, set:

$$
\begin{aligned}
u & =t \\
d v & =e^{-s t} d t \quad \text {. then: }
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} t e^{-s t} d t & =-\left.\frac{t}{s} e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{1}{s} e^{-s t} d t \\
& =0-\left.\left(\frac{1}{s^{2}} e^{-s t}\right)\right|_{0} ^{\infty} \\
& =\frac{1}{s^{2}}
\end{aligned}
$$

The Laplace Transform Method...

$$
\begin{aligned}
& f(t)=t \quad ; \text { Then } \cdots \\
& F(s)=\int_{0}^{\infty} t e^{-s t} d t
\end{aligned}
$$

$f(t)$	$F(s)$
t	$\frac{1}{s^{2}}$

The Laplace Transform Method...
(3) Noun .. $f(t)=\frac{d t}{d t}$

$$
\alpha\left\{d \frac{d t}{d t}\right\}=\int_{0}^{\infty} \frac{d f}{d t} e^{-s t} d t
$$

tyativ, entegmite by parts:

$$
\begin{aligned}
u & =e^{-s t} \\
d v & =\frac{d f}{d t} d t
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d f}{d t} e^{-s t} d t & =\left.f(t) e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t)\left(-s e^{-s t}\right) d t \\
& =-f(0)+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =-f(0)+s F(s)
\end{aligned}
$$

So...

$f(t)$	$f(s)$
$\frac{d f}{d t}$	$s f(s)-f(0)$

The Laplace Transform Method...
and .. . w proof
(4)

$f(t)$	$F(s)$
$a_{1} f_{1}(t)+a_{2} f_{2}(t)$	$a_{1} F_{1}(s)+a_{2} F_{2}(s)$

The Laplace Transform Method...
de... using all this, we yo back to our differential eprantion:

$$
\begin{gathered}
\frac{d k}{d t}=-k A \\
\mathcal{Z}\left\{\frac{d A}{I t}\right\}=\mathcal{Z}\{-k A\} \\
S A(s)=A(0)=-k A(s)=A_{0} \\
S A(s)+k A(s)=A_{0} \\
A(s)=\frac{A_{0}}{s+k}
\end{gathered}
$$

The transforms solution.

The Laplace Transform Method...

$$
\begin{aligned}
& A(s)=\frac{t_{0}}{s+k} \\
& \mathcal{Z}^{-1}(A(s))=\mathcal{Z}^{-1}\left[\frac{A_{s}}{s+k}\right]
\end{aligned}
$$

The Laplace Transform Method...

To fond our solutive, we just tales the n verve Lap lase trewzlewn:

$$
\begin{aligned}
& A(s)=\frac{t_{0}}{s+k} \\
& \mathcal{Z}^{-1}(A(s))=\mathcal{Z}^{-1}\left[\frac{A_{s}}{s+k}\right]
\end{aligned}
$$

remember...

so... | $f(t)$ | $F(s)$ |
| :--- | :--- |
| $e^{-k t}$ | $\frac{1}{s+k}$ |

The Laplace Transform Method...

To found our solution, we just tales the invent Lap lose thernsporn:

$$
\begin{aligned}
& A(s)=\frac{t_{0}}{s+k} \\
& \mathcal{Z}^{-1}(A(s))=\mathcal{Z}^{-1}\left[\frac{A_{0}}{s+k}\right] \\
& A(t)=A_{0} e^{-k t}
\end{aligned}
$$

Note that we didn't integrate anything! we just did alyebem.

In Laplace transform space $(\mathrm{F}(\mathrm{s})$), differentiation and integration become just a matter of doing algebra and finding the inverse transform...

The Laplace Transform Method...

What about the more complicated inhomogeneous first order equation?

$$
\begin{aligned}
\frac{d B}{d t}=-k_{2} B+k_{1} A, \text { where } A & =A_{0} e^{-k t} \\
B(0) & =0
\end{aligned}
$$

The solution to the linear, first-order, inhomogeneous differential equation... the old way...

$$
\begin{aligned}
\frac{d B}{d t}=-k_{2} B+k_{1} A, \text { whine } & A=A_{0} e^{-k t} \\
B(0) & =0
\end{aligned}
$$

The solaithon is going to be a sum of the hamogeneae solution and the partenlar solution to the specitis mort.
bunch of algebra, using initial conditions...

$$
B(t)=\frac{A_{0} k_{1}}{k_{2}-k_{1}}\left[e^{-k, t}-e^{-k_{2} t}\right]
$$

By the Laplace transform approach...

$$
\begin{gathered}
\frac{d B}{d t}=-k_{2} B+k_{1} A \\
\frac{d B}{d t}+k_{2} B=k_{1} A_{0} e^{-k_{1} t} \\
\mathcal{L}\left\{\frac{d B}{d t}\right\}+k_{2} \mathcal{L}\{B\}=k_{1} A_{0} \mathcal{L}\left\{e^{-k_{1} t}\right\}
\end{gathered}
$$

By the Laplace transform approach...

$$
\begin{aligned}
& \frac{d B}{d t}=-k_{2} B+k_{1} A \\
& \frac{d B}{d t}+k_{2} B=k_{1} A_{0} e^{-k_{1} t} \\
& \mathcal{L}\left\{\frac{d B}{d t}\right\}+k_{2} \mathcal{L}\{B\}=k_{1} A_{0} \mathcal{L}\left\{e^{-k_{1} t}\right\} \\
& S B G)-B(0)+k_{2} B(s)=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(()=0,=0 \\
& B(s)\left[s+k_{2}\right]=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(s)=\frac{k_{1} A_{0}}{\left(s+k_{1}\right)\left(s+k_{2}\right)} \quad \text { The hanson solution }
\end{aligned}
$$

By the Laplace transform approach...

$$
\begin{aligned}
& \frac{d B}{d t}=-k_{2} B+k_{1} A \\
& \frac{d B}{d t}+k_{2} B=k_{1} A_{0} e^{-k_{1} t} \\
& \mathcal{L}\left\{\frac{d B}{d t}\right\}+k_{2} \mathcal{L}\{B\}=k_{1} A_{0} \mathcal{L}\left\{e^{-k_{1} t}\right\} \\
& S B G)-B(0)+k_{2} B(s)=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(())=0,20 \ldots \\
& B(s)\left[s+k_{2}\right]=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(s)=\frac{k_{1} A_{0}}{\left.G+k_{1}\right)\left(s+k_{2}\right)} \quad \text { The Thanstan solution } \\
& \mathcal{L}^{-1}\{B(s)\}=k_{1} A_{0} \mathcal{L}^{-1}\left\{\frac{1}{\left(s-1 k_{1}\right)\left(s+k_{2}\right)}\right\}
\end{aligned}
$$

By the Laplace transform approach...

636 INTFGRAL. TRANSFORMS

A Short Table of Laplace Transtorms

$$
\begin{gathered}
y=f(t), i>0 \\
{[y=f(t)=0, i<0]}
\end{gathered}
$$

$$
Y=L(y)=F(p)=\int_{0}^{\infty} e^{-F} f(t) d t
$$

11	1	$\frac{1}{p}$	Rep>0	
L2	$8^{-a t}$	$\frac{1}{p+a}$	$\operatorname{Re}(p+a)>1$	
$L 3$	$\sin 21$	$\frac{a}{p^{2}+a^{2}}$	$\operatorname{Re} p>\mid \mathrm{lm}$ e\|	
14	cos ar	$\frac{p}{p^{2}+a^{2}}$	Rep>\| lm \&	
LS	$r^{*}, k>-1$	$\frac{k!}{p^{k+1}}$ or $\frac{\Gamma(k+1)}{p^{t+1}}$	Rep $\gg 0$	
L6	$t^{k} c^{-a t}, k>-1$	$\frac{k 1}{(p+a)^{k+1}}$ or $\frac{\Gamma(k+1)}{(p+a)^{k+1}}$	$\operatorname{Re}(p+a)>1$	
17	$\frac{e^{-a c}-e^{-b}}{b-a}$	$\frac{1}{(p+a)(p+b)}$	$\operatorname{Re}(p+a)>0$	
L8	$\frac{a c^{-\pi}-b e^{-b}}{4-b}$	$\frac{p}{(f+c)(p+b)}$	$\operatorname{Re}(p+b)>0$	

Lookup inverse transforms...

By the Laplace transform approach...

$$
\begin{aligned}
& \frac{d B}{d t}=-l_{2} B+k_{1} A \\
& \frac{d B}{d t}+k_{2} B=k_{1} A_{0} e^{-k_{1} t} \\
& \mathcal{L}\left\{\frac{d B}{d t}\right\}+k_{2} \mathcal{L}\{B\}=k_{1} A_{0} \mathcal{L}\left\{e^{-k_{1} t}\right\} \\
& s B G)-B(0)+k_{2} B(s)=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(0)=0 \text {, } 20 . . . \\
& B(s)\left[s+k_{2}\right]=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(6)=\frac{k_{1} A_{0}}{\left(s+k_{1}\right)\left(s+k_{2}\right)} \quad \text { The Thansten solution } \\
& \mathcal{L}^{-1}\{B(s)\}=k, A_{0} \cdot \mathcal{L}^{-1}\left\{\frac{1}{(s i k,)\left(s+k_{2}\right)}\right\} \quad \text { * see tong } \\
& B(t)=k_{1} A_{0}\left[\frac{e^{-k_{1} t}-e^{-k_{2} t}}{k_{2}-k_{1}}\right] \\
& =\frac{A_{0} k_{1}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]
\end{aligned}
$$

By the Laplace transform approach...

$$
\begin{aligned}
& \frac{d B}{d t}=-e_{z} B+k_{1} A \\
& \frac{d B}{d t}+k_{2} B=k_{1} A_{0} e^{-k_{i} t} \\
& \mathcal{L}\left\{\frac{d B}{d t}\right\}+k_{2} \mathcal{L}\{B\}=k_{1} A_{0} \mathcal{L}\left\{e^{-k_{1} t}\right\} \\
& s B G)-B(0)+k_{2} B(s)=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(0)=0 \text {, } 20 . . . \\
& B(s)\left[s+k_{2}\right]=k_{1} A_{0}\left[\frac{1}{s+k_{1}}\right] \\
& B(6)=\frac{k_{1} A_{0}}{\left(s+k_{1}\right)\left(s+k_{2}\right)} \quad \text { The Thantion solution } \\
& \mathcal{L}^{-1}\{B(s)\}=k, A_{0} \mathcal{L}^{-1}\left\{\frac{1}{(s i k,)(s+k)}\right\} \quad \text { * see tong } \\
& B(t)=k_{1} A_{0}\left[\frac{e^{-k_{1} t}-e^{-k_{2} t}}{k_{2}-k_{1}}\right] \\
& =\frac{A_{0} k_{1}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]
\end{aligned}
$$

Much simpler approach...

Part 3: Back to decomposability of linear systems...
Another e way of thinking about i is that the ford over equation in the response f a first order system to as "impulse "stimulus: Cave I: $A=A_{0} c^{-k t}$

$$
\begin{aligned}
& I_{\text {neut }}=\delta(t) A_{0} \\
& H(t)=e^{-k t} \\
& \text { output }=A(t)
\end{aligned}
$$

But...also an approach to "see" the reduction of a high-order system to a combination of first-order systems...

the response f a frosh oder system to as "impulse "stimulus:
Cate I: $A=A_{0} C^{-k t}$

$$
\begin{aligned}
& \text { Input }=\delta(t) A_{0} \\
& H(t)=e^{-k t} \\
& \text { Output }=A(t)
\end{aligned}
$$

In keeping with our process-centric view, this of a first order system as a "process" that converts an input into an output.

The process has a characteristic function...the so-called "transfer function". It is fundamentally defined by the response to an impulse input.

Another wary of thinking absent A is that the fort order equation in the response f a fired oder syiceme to an "impales "stimulus:

$$
\begin{aligned}
& \text { Input }=\delta(t) A_{0} \\
& H(t)=e^{-k t} \\
& \text { Output }=A(t)
\end{aligned}
$$

It (f) is sometimes called "a transfer function". It recites the outport to the input by thais equation:

$$
\begin{aligned}
& \text { Output }(t)=H(t) * I_{n p a} 1(t) \\
& \text { Outpost }(s)=H(s) \cdot I_{\text {np }} t(s)
\end{aligned}
$$

Lets ehace nar unferstandin....

Thus, a second onder spptem is like lioking two firt order systams trgether, wherre the ounfort of the first is the input to the
second.

Lets ehace ner unferstandiy....

Thus, a second order spptem is like linking two fint order spstans trgether, wherre the ountport of the first is the input to the
seound:

$$
\begin{aligned}
A(t) & =H_{1}(t) * I_{\text {npat }}(t) \\
B(t) & =H_{2}(t) * A(t) \\
& =H_{2}(t) * H_{1}(t) * I_{\text {npp }} t(t)
\end{aligned}
$$

Lets elacele nay understanding....

Thus, a second order system is like linking two finis order opstans together, where the oust ert of the first is the input te the

$$
\begin{aligned}
A(t) & =H_{1}(t) * I_{\text {rpt }}(t) \\
B(t) & =H_{2}(t) * A(t) \\
& =H_{2}(t) * H_{1}(t) * I_{\text {np p }} t(t)
\end{aligned}
$$

Let's use this to study our two cases...a first order system (single exponential) and our second order system (a double exponential)...

$$
\begin{aligned}
& \Delta(t)=e^{-k t} \\
& \delta(t)=\text { (the implies function) }
\end{aligned}
$$

we sand that:

$$
A(t)=H(t) * \delta(t) A_{0}
$$

In Laplace treansjoums:

$$
A(s)=H(s) \cdot \mathcal{L}\{\delta(1)\} A_{0} \quad ; \text { Now }\langle\{s(1)\} \leq 1
$$

S* ...

$$
A(s)=\frac{A_{0}}{s+k}
$$

$$
A(t)=A_{0} e^{-k t}
$$

So, the first order system can be thought of as a system driven by an impulse stimulus...
cond.

$$
\begin{aligned}
& H_{1}(t)=e^{-k_{1} t} \\
& H_{2}(t)=e^{-k_{2} t}
\end{aligned}
$$

S(t): imple furctim

$$
\begin{aligned}
& B(t)=H_{1}(t) * H_{2}(t) * \delta(1) A_{0} \\
& B(s)=H_{1}(s) \cdot H_{2}(3) \cdot A_{0}
\end{aligned}
$$

So... the secoud onder proceno $\{$ producivey $B(t)$ is dese to the serial attenk nent of fisi overer prounco.
$\cos \pi$ I:

$$
\begin{aligned}
& H_{1}(t): e^{-k_{1} t} \\
& H_{2}(t)=e^{-k_{7} t}
\end{aligned}
$$

S(t): imple furctim

$$
\begin{aligned}
& B(t)=H_{1}(t) * H_{2}(t) * \delta(1) A_{0} \\
& B(s)=H_{1}(s) \cdot H_{2}(s) \cdot A_{0}
\end{aligned}
$$

 of firsi overer prouncos.

Do you see:
(1) that the fint half of the blocke diangmin io just a hornugenems sirst order differnicil equ?

$$
\frac{d A}{d t}=-\operatorname{le} A
$$

(c) thit the secued hulf is just the inhernygencous frost ordor deffertital egu?

So, a second order system is a series of two first order systems....a basic property of linearity!

This reduction of a high-order system to a combination of first-order systems is a fundamental property of linear systems...

I, This general for any order equation? yes...
Saywe have:

$$
\frac{d^{n} u}{d x^{n}}=f(t, n) \quad\left(n^{-h} \operatorname{order}\right)
$$

we come decamyse this into a system of n first order eqns:

O.f.withon of y_{i}	$\frac{d}{1 / \text { order }}$ Eu for y_{i}
$y_{1}=u$	$\frac{d y_{1}}{d t}=y_{2}$
$y_{2}=\frac{d u}{d t}$	$\frac{d y_{2}}{d t}=y_{3}$
$y_{3}=\frac{d^{2} u}{d t^{2}}$	$\frac{d y_{3}}{d t}=y_{4}$
\vdots	
\vdots	
$y_{n}=\frac{d^{n-1} u}{d t^{n-1}}$	$\frac{d y_{n}}{d t}=f(t, m)$

So...linear time-invariant systems are "simple" (not complex) for two reasons:
(1) They have the property that the impulse response fully characterizes their behavior. All responses to more complex inputs are just a convolution of the impulse response (the transfer function) with the input function.

So...linear time-invariant systems are "simple" (not complex) for two reasons:
(1) They have the property that the impulse response fully characterizes their behavior. All responses to more complex inputs are just a convolution of the impulse response (the transfer function) with the input function.

(2) Higher order systems can always be broken down into a serial process of linked first order systems....

Next time...a full analysis of $\mathbf{n}=2$ linear systems...and graphical tools

Next, the obvious mathematical model....

$$
\begin{aligned}
& R \xrightarrow{\delta(t)} A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} M \\
& \frac{d B}{d t}=-k_{2} B+k_{1} A, \text { where } \quad \begin{array}{l}
A=A_{0} e^{-k t} \\
B(0)=0
\end{array}
\end{aligned}
$$

How do we solve this differential equation? Well here is one way....

$$
\begin{aligned}
& \frac{d B}{d t}=-k_{2} B+k_{1} A, \text { whine } A=A_{0} e^{-k_{1} t} \\
& B(0)=0
\end{aligned}
$$

We make a proposal....

The solathen is going to be a sum of the harogereved solution and the particular solution to the specitis mort.

$$
B(t)=\frac{B_{p}(t)}{\square}+\frac{B_{h}(t)}{\longrightarrow \text { the particular solution. }} \text { the hernogesesocotmen} \frac{d B}{d t}=-k_{B} B
$$

The idea is to think of this system as having two parts to its solution....one that looks like its "natural" response (the homogeneous solution) and one that looks like the input into it (the particular solution). Let's look at the particular solution first...

$$
\begin{aligned}
\frac{d B}{d t}=-k_{2} B+k_{1} A, \text { whive } & A=A_{0} e^{-k_{1} t} \\
B(0) & =0
\end{aligned}
$$

The soluthere is joing to be a sum of the harogererea solation and the partsular solution to the specitis mport.

$$
B(t)=\frac{B_{p}(t)}{L}+\frac{B_{h}(t)}{L} \text { the hennrgosesocimen} \frac{d B}{d t}=-k_{B} B
$$

the particudor solution.

Now, $B_{p}(f)$ is gorng to losk libe the impurt, So...

$$
B_{p}(t)=C A_{0} e^{-k, t} \text {. All we need to b.gowe nont is whatis } C \text {. }
$$

Now, $B_{p}(t)$ is gown g to look R. bee the roper. So...
$B_{p}(t)=C A_{0} e^{-k, t}$. All were need to bryon ant is whats C.

$$
\begin{aligned}
& \frac{d B_{0}}{d t}+k_{2} B_{1}=k_{1} A \\
&=k_{1} A_{0} e^{-k_{1} t} \\
&-k_{1} C A_{0} e^{-k, t}+k_{2} C A_{0} e^{-k_{1} t}=k_{1} A_{0} e^{-k_{1} t} \\
&-k_{1} C+k_{2} C=k_{1} \\
& C=\frac{k_{1}}{k_{2}-k_{1}}
\end{aligned}
$$

So... $B_{p}(t)=\frac{k_{1} A_{0}}{k_{2}-k_{1}} e^{-k_{1} t}$
The particular: solentime

$$
B(t)=\frac{B_{p}(t)}{\square}+\frac{B_{h}(t)}{L \text { the partionlor solution }} \text { the herargse solelim} \frac{d B}{d t}=-k_{2} B
$$

$$
\begin{aligned}
B(t) & =B_{p}(t) r B_{h}(t) \\
& =\frac{A_{0} k_{0}}{k_{2}-k_{1}} e^{-k_{1} t}+0 e^{-k_{2} t} \quad \ldots \text { Now What is } D \text { ? } \\
B(0) & =0 \text {, so .. } \\
0 & =\frac{A_{0} k_{1}}{k_{2}-k_{1}}+D
\end{aligned}
$$

So, putting it all together...

$$
B(t)=\frac{B_{p}(t)}{\square}+\frac{B_{h}(t)}{L \text { the parthenler solintime }} \text { the herargso soleime } \frac{d B}{d t}=-k_{2} B
$$

$$
\begin{aligned}
B(t) & =B_{p}(t) r B_{h}(t) \\
& =\frac{A_{0}\left(k_{1}\right.}{k_{2}-k_{1}} e^{-k_{1} t}+D e^{-k_{2} t} \quad \text {... Now What is } D \text { ? } \\
B(0) & =0 \text {, so .. } \\
0 & =\frac{A_{0}\left(k_{1}\right.}{k_{2}-k_{1}}+D
\end{aligned}
$$

So, putting it all together...
Thus ...

$$
B(t)=\frac{A_{0} k_{1}}{k_{2}-k_{1}}\left[e^{-k, t}-e^{-k_{2} t}\right]
$$

The fore wherein

