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So, today we explore the truly astounding emergent complexity inherent in even simple non-linear 
dynamical systems. 
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So, today: 

(1) A reminder of the van der Pol oscillator - a small non-linear system that 
illustrates analysis of stability, limit cycle oscillations, and bifurcation. 

(2) Concepts of local linearization and formal analyses of stability and 
bifurcation. Examples in the classic van der Pol oscillator, the Fitzhigh-
Nagumo model, and perhaps a higher order system. 

 



The general solution to second-order linear system…

…a vector of initial conditionsgiven

….where A is the characteristic matrix.  It’s 
properties control all behaviors of the 
system



Properties of the characteristic matrix…

…the eigenvalues of A are completely determined by 
the trace and determinant…



…stability is determined by the real part 
of the eigenvalue…

System behaviors: the second order linear case



We know how to analyze the behavior….right?

Seeing behaviors: the linear harmonic oscillator



Eigenvalues are pure imaginary….so centers!

Seeing behaviors: the linear harmonic oscillator



Eigenvalues are pure imaginary….so centers! 

And…remember the system nullclines, which help 
us sketch the behavior in the phase space…

Seeing behaviors: the linear harmonic oscillator



A non-linear oscillator...

Here is the non-linearity….with mu controlling the 
degree of non-linearity.



Re-writing the equations in a 
more intuitive way....

A non-linear oscillator...



A non-linear oscillator...

, where

Now, we compute fixed points and  nullclines and 
sketch the behavior in the x, y space….



A non-linear oscillator...

, where

Fixed point at origin.  At any non-zero (x, y) the 
system has a limit cycle oscillation…



A non-linear oscillator...

, where

Fixed point at origin.  At any non-zero (x, y) the 
system has a limit cycle oscillation…

A closed orbit that another trajectory 
spirals into as time goes to infinity…



A non-linear oscillator...

, where

The limit cycle shows the property of a large 
divergence of time scales….



A non-linear oscillator...

, where



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

a network of elementary passive and active components 



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

a network of elementary passive and active components 

things that use but do not produce energy

(resistor)

(capacitor)

(inductor)



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

a network of elementary passive and active components 

voltage and current 
sources



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

here, there is also a non-linear resistor…with a cubic response function



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….

because of the chain rule…



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….

we can simplify this using our basic voltage 
equation for the non-linear resistor…



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

if we choose a =1 and b = 1/3….



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

if we choose a =1 and b = 1/3….

starting to look like our usual van der Pol 
system…



An electrical circuit implementation of the van der Pol oscillator…

A non-linear oscillator...

if we choose a =1 and b = 1/3….

and, taking the derivative….



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….

this is the differential equation that 
controls our system…



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….

And now for a little magic. I will re-scale 
time so that 



Based on Kirchhoff’s voltage law…

A non-linear oscillator...

, or….

, where…



A non-linear oscillator...

, where…

Remember the basic van der Pol oscillator equation?



A non-linear oscillator...

, where…

Remember the basic van der Pol oscillator equation?



A non-linear oscillator...

…the actual implementation of our non-linear resistor element, 
with appropriate choices of R1-R5 to get a=1, b=1/3, and the 
effective net resistance to be R



A non-linear oscillator...

, where…

now…let’s carry out stability and bifurcation analysis of this 
system



A non-linear oscillator...

, where…

again, a re-writing of our equation to represent the phase 
space…and we know the fixed point:

To study the stability of the fixed point, we carry out a 
local linearization…and then look at the flow.



A general non-linear system…

and let’s say



A general non-linear system…

and let’s say

that is, (x*,y*) is a fixed point



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

Similar thing for the disturbance v….



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

…and in matrix form,



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

…and ignoring the quadratic and higher 
order terms, since they are tiny….



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

…this is the locally linearized form of our 
general non-linear system…



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

this matrix is called the Jacobian, and evaluated at the 
fixed point (x*,y*), tells us about the flow of the system in 
the local environment…



A general non-linear system…

and let’s say

Now, we introduce a disturbance around the fixed point….

To see if the disturbance grows or not, we look at the derivatives…

the Jacobian. In this form, this matrix is just like the 
characteristic matrix for a linear system, right?  So, we 
know how to analyze its behavior…



A non-linear oscillator...

, where…

At the fixed point….

And what are the eigenvalues?  Remember that stability is 
about the sign of the real part of the system eigenvalues…



A non-linear oscillator...

, where…

At the fixed point….

The trace of the Jacobian is epsilon, and so the system is 
stable for negative values and unstable for positive…



A non-linear oscillator...

, where…

At the fixed point….

So, for a van der Pol oscillator, the system loses stability at 
the place where the real part of the system eigenvalues go from 
negative to positive….such an event is called a Hopf bifurcation



A non-linear oscillator...

, where…



The neuronal action potential…a slight variation on the van der Pol oscillator…

A non-linear oscillator...



A non-linear oscillator...

this is essentially the van der Pol oscillator, 
with one difference…. 

 

Fitzhugh-Nagumo (1962)

membrane pot

slow K+ flux



A non-linear oscillator...

the linear term to the w nullcline provides 
for thresholded oscillation…. 

 

membrane pot

slow K+ flux



A non-linear oscillator...

the linear term to the w nullcline provides for thresholded 
oscillation….a stable fixed point destabilized to produce 
relaxation oscillations.  We will look at this more closely next 
time… 

 

membrane pot

slow K+ flux



Next, we will further analyze the simple non-linear oscillator systems… 
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