Lecture 10: Non-linear Dynamical Systems - Part 2

R. Ranganathan

Green Center for Systems Biology, ND11.120E

Principles of stability and bifurcation in simple **non-linear** dynamical systems

Joseph-Louis LaGrange 1736 - 1813

Henri Poincare 1854 - 1912

Edward Lorenz 1917-2008

Robert May

1936 -

Mitchell Feigenbaum 1944 -

Albert Libchaber 1934 -

So, today we explore the truly astounding emergent complexity inherent in even simple **non-linear dynamical systems**.

	n = 1	n = 2 or 3	n >> 1	continuum
Linear	exponential growth and decay single step conformational change fluorescence emission pseudo first order kinetics	second order reaction kinetics linear harmonic oscillators simple feedback control sequences of conformational change	electrical circuits molecular dynamics systems of coupled harmonic oscillators equilibrium thermodynamics diffraction, Fourier transforms	Diffusion Wave propagation quantum mechanics viscoelastic systems
Nonlinear	fixed points bifurcations, multi stability irreversible hysteresis overdamped oscillators	anharmomic oscillators relaxation oscillations predator-prey models van der Pol systems Chaotic systems	systems of non- linear oscillators non-equilibrium thermodynamics protein structure/ function neural networks the cell ecosystems	Nonlinear wave propagation Reaction-diffusion in dissipative systems Turbulent/chaotic flows

So, today:

(1) A reminder of the van der Pol oscillator - a small **non-linear system** that illustrates analysis of stability, limit cycle oscillations, and bifurcation.

(2) Concepts of **local linearization** and formal analyses of stability and bifurcation. Examples in the classic van der Pol oscillator, the Fitzhigh-Nagumo model, and perhaps a higher order system.

The general solution to second-order linear system...

$$\begin{split} \dot{x} &= ax + by \\ \dot{y} &= cx + dy \end{split} \longrightarrow \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ \dot{\mathbf{x}} &= A\mathbf{x} \quad \text{given } \mathbf{x_0} \quad \dots \text{a vector of initial conditions} \\ & \downarrow \\ \mathbf{x}(t) &= e^{\mathbf{A}t}\mathbf{x_0} \end{split}$$

....where **A** is the characteristic matrix. It's properties control all behaviors of the system

Properties of the characteristic matrix...

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{array}{l} \tau = \operatorname{trace}(A) = a + d ,\\ \Delta = \det(A) = ad - bc .\\ \end{array}$$
$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right)$$

...the **eigenvalues** of **A** are completely determined by the **trace** and **determinant**...

System behaviors: the second order linear case

...stability is determined by the **real part** of the eigenvalue...

Seeing behaviors: the linear harmonic oscillator

We know how to **analyze the behavior**....right?

Seeing behaviors: the linear harmonic oscillator

Seeing behaviors: the linear harmonic oscillator

$$\ddot{x} + \mu(x^{2}-1)\dot{x} + x = 0$$

$$\ddot{x} + \mu(x^{2}-1)\dot{x} + x = 0$$

$$\ddot{x} + \mu(x^{2}-1)\dot{x} + x = 0$$
(1)
$$\ddot{x} + \mu(x^{2}-1)\dot{x} = \frac{d}{dt}\left(\dot{x} + \mu\left[\frac{1}{2}x^{3}-x\right]\right)$$
(2)
$$F(x) = \frac{1}{3}x^{3}-x$$
(3)
$$w = \dot{x} + \mu F(x)$$
(4)
$$x = \dots$$

$$\dot{w} = \ddot{x} + \mu(x^{2}-1)\dot{x} = -x$$

$$w = y\left[(y - F(x)]\right]$$

$$\dot{y} = -\frac{1}{\mu}x$$

Re-writing the equations in a **more intuitive** way....

Now, we compute **fixed points** and **nullclines** and sketch the behavior in the x, y space....

Fixed point at origin. At any non-zero (x, y) the system has a **limit cycle oscillation**...

Fixed point at origin. At any non-zero (x, y) the system has a **limit cycle oscillation**...

A closed orbit that another trajectory spirals into as time goes to infinity...

$$\vec{x} + \mu(x^2 - 1) \dot{x} + x = 0 \qquad (\text{the van due fol ascellation})$$

$$\vec{x} = \mu[y - F(x)]$$

$$\dot{y} = -\frac{1}{\mu} x$$

$$\text{, where} \qquad \begin{array}{c} F(x) = \frac{1}{2} x^3 - x \\ w = \dot{x} + \mu F(x) \\ y = \frac{1}{\mu} \end{array}$$

The limit cycle shows the property of a large **divergence of time scales**....

$$y = F(r) \sim O(\mu^{-1})$$

 $y = F(r) \sim O(\mu^{-1})$
 $y = F(r) \sim O(\mu^{-1})$

An electrical circuit implementation of the van der Pol oscillator...

An electrical **circuit implementation** of the van der Pol oscillator...

$$\Delta V = Ri \qquad \text{(resistor)}$$

$$i = C \frac{dV}{dt} \qquad \text{(capacitor)}$$

$$\Delta V = L \frac{di}{dt} \qquad \text{(inductor)}$$

An electrical circuit implementation of the van der Pol oscillator...

here, there is also a **non-linear resistor**...with a cubic response function

$$i_L + i_{C1} + i_R = 0$$
 , or....

$$rac{di_L}{dt}+rac{di_{C1}}{dt}+rac{di_R}{dt}=0$$

$$\begin{split} i_L + i_{C1} + i_R &= 0 \quad \text{, or....} \\ \frac{di_L}{dt} + \frac{di_{C1}}{dt} + \frac{di_R}{dt} = 0 \\ \frac{v_{C1}}{L_1} + C_1 \frac{d^2 v_{C1}}{dt^2} + \frac{di_R}{dv_{C1}} \frac{dv_{C1}}{dt} = 0 \end{split}$$

$$i_{L} + i_{C1} + i_{R} = 0 \quad \text{, or....}$$

$$\frac{di_{L}}{dt} + \frac{di_{C1}}{dt} + \frac{di_{R}}{dt} = 0$$

$$\frac{v_{C1}}{L_{1}} + C_{1} \frac{d^{2}v_{C1}}{dt^{2}} + \frac{di_{R}}{dv_{C1}} \frac{dv_{C1}}{dt} = 0$$
because of the chain rule...

$$\frac{d(i_R(v_{C1}))}{dt} = \frac{di_R}{dv_{C1}}\frac{dv_{C1}}{dt}$$

Based on Kirchhoff's voltage law...

$$\begin{split} i_L + i_{C1} + i_R &= 0 \quad \text{, or...} \\ \frac{di_L}{dt} + \frac{di_{C1}}{dt} + \frac{di_R}{dt} = 0 \\ \frac{v_{C1}}{L_1} + C_1 \frac{d^2 v_{C1}}{dt^2} + \frac{di_R}{dv_{C1}} \frac{dv_{C1}}{dt} = 0 \end{split}$$

we can simplify this using our basic voltage equation for the non-linear resistor...

$$i_R(v_{C1}) = (av_{C1} + bv_{C1}^3)\frac{1}{R}$$

An electrical circuit implementation of the van der Pol oscillator...

$$i_R(v_{C1}) = (av_{C1} + bv_{C1}^3)\frac{1}{R}$$

if we choose **a** =1 and **b** = 1/3....

An electrical circuit implementation of the van der Pol oscillator...

$$i_R(v_{C1}) = (av_{C1} + bv_{C1}^3)\frac{1}{R}$$

if we choose **a** =1 and **b** = 1/3....

$$i_R(v_{C1}) = (-v_{C1} + \frac{1}{3}v_{C1}^3)\frac{1}{R}$$

starting to look like our usual van der Pol system...

An electrical circuit implementation of the van der Pol oscillator...

$$i_R(v_{C1}) = (av_{C1} + bv_{C1}^3)\frac{1}{R}$$

if we choose **a** =1 and **b** = 1/3....

$$i_R(v_{C1}) = (-v_{C1} + \frac{1}{3}v_{C1}^3)\frac{1}{R}$$

and, taking the derivative....

$$\frac{di_R(v_{C1})}{dv_{C1}} = (-1 + v_{C1}^2)\frac{1}{R}$$

Based on Kirchhoff's voltage law...

$$\begin{split} i_L + i_{C1} + i_R &= 0 \quad \text{or} \\ \frac{di_L}{dt} + \frac{di_{C1}}{dt} + \frac{di_R}{dt} = 0 \\ \frac{v_{C1}}{L_1} + C_1 \frac{d^2 v_{C1}}{dt^2} + \frac{di_R}{dv_{C1}} \frac{dv_{C1}}{dt} = 0 \\ & \checkmark \\ C_1 \frac{d^2 v_{C1}}{dt^2} + \left(-1 + v_{C1}^2\right) \frac{1}{R} \frac{dv_{C1}}{dt} + \frac{v_{C1}}{L_1} = 0 \end{split}$$

this is the **differential equation** that controls our system...

Based on Kirchhoff's voltage law...

And now for a little magic. I will **re-scale** time so that

$$\tau = \frac{t}{\sqrt{L_1 C_1}}$$

$$\begin{split} i_L + i_{C1} + i_R &= 0 \quad \text{, or....} \\ \frac{di_L}{dt} + \frac{di_{C1}}{dt} + \frac{di_R}{dt} = 0 \\ \frac{v_{C1}}{L_1} + C_1 \frac{d^2 v_{C1}}{dt^2} + \frac{di_R}{dv_{C1}} \frac{dv_{C1}}{dt} = 0 \\ \downarrow \\ C_1 \frac{d^2 v_{C1}}{dt^2} + \left(-1 + v_{C1}^2\right) \frac{1}{R} \frac{dv_{C1}}{dt} + \frac{v_{C1}}{L_1} = 0 \\ \downarrow \\ \frac{dv_{C1}}{d\tau} - \epsilon (1 - v_{C1}^2) \frac{dv_{c1}}{d\tau} + v_{c1} = 0 \quad \text{, where...} \quad \epsilon = \frac{1}{R} \sqrt{\frac{L_1}{C_1}} \end{split}$$

Remember the basic van der Pol oscillator equation?

Remember the basic van der Pol oscillator equation?

$$\ddot{x} + \mu(r^2 - 1)\dot{x} + x = 0$$

...the **actual implementation** of our non-linear resistor element, with appropriate choices of R1-R5 to get a=1, b=1/3, and the effective net resistance to be R

now...let's carry out **stability** and **bifurcation** analysis of this system

again, a **re-writing** of our equation to represent the phase space...and we know the fixed point:

 $(x^*, y^*) = (0, 0).$

To study the stability of the fixed point, we carry out a **local linearization**...and then look at the flow.

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\dot{u} = \dot{x} \qquad (\text{since } x^* \text{ is a constant})$$

$$= f(x^* + u, y^* + v) \qquad (\text{by substitution})$$

$$= f(x^*, y^*) + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv) \text{ (Taylor series expansion)}$$

$$= u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv) \qquad (\text{since } f(x^*, y^*) = 0 \text{).}$$

Similar thing for the **disturbance v**....

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\dot{u} = u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv)$$
$$\dot{v} = u \frac{\partial g}{\partial x} + v \frac{\partial g}{\partial y} + O(u^2, v^2, uv).$$

...and in matrix form,

$$\begin{aligned} \dot{x} &= f(x,y) \\ \dot{y} &= g(x,y) \end{aligned} \quad \text{and let's say} \quad f(x^*,y^*) = 0 \,, \qquad g(x^*,y^*) = 0 \,. \end{aligned}$$

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \text{ quadratic terms.}$$

...and **ignoring the quadratic** and higher order terms, since they are tiny....

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

...this is the **locally linearized** form of our general non-linear system...

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

this matrix is called the **Jacobian**, and evaluated at the fixed point (x^*,y^*) , tells us about the flow of the system in the local environment...

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ and let's say $f(x^*, y^*) = 0$, $g(x^*, y^*) = 0$.

Now, we introduce a **disturbance** around the fixed point....

$$u = x - x^*, \qquad v = y - y^*$$

To see if the disturbance grows or not, we look at the **derivatives**...

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial k}{\partial x} & \frac{\partial k}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

the **Jacobian**. In this form, this matrix is just like the characteristic matrix for a linear system, right? So, we

know how to analyze its behavior...

At the fixed point.... $(x^*, y^*) = (0, 0)$.

$$\mathsf{J} = \begin{pmatrix} 0 & 1 \\ -1 & \epsilon \end{pmatrix}$$

And what are the **eigenvalues**? Remember that stability is about the sign of the real part of the system eigenvalues...

$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right)$$

At the fixed point.... $(x^*, y^*) = (0, 0)$.

$$\mathsf{J} = \begin{pmatrix} 0 & 1 \\ -1 & \epsilon \end{pmatrix}$$

The **trace of the Jacobian** is epsilon, and so the system is stable for negative values and unstable for positive...

At the fixed point.... $(x^*, y^*) = (0, 0)$.

$$\mathsf{J} = \begin{pmatrix} 0 & 1 \\ -1 & \epsilon \end{pmatrix}$$

So, for a van der Pol oscillator, the system loses stability at $\epsilon = 0$ the place where the real part of the system eigenvalues go from negative to positive....such an event is called a **Hopf bifurcation**

The neuronal action potential...a slight variation on the van der Pol oscillator...

membrane pot

slow K+ flux

$$\frac{\mathrm{d}v}{\mathrm{d}t} = v - \frac{v^3}{3} - w + I$$
$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{1}{\tau}(v + a - bw)$$

this is essentially the van der Pol oscillator, with **one difference**....

dv

d*t*

dw

d*t*

= v

=

membrane pot

slow K+ flux

the linear term to the w nullcline provides for **thresholded oscillation**....

 v^3

3

w+I

(a-bw)

membrane pot

slow K+ flux

the linear term to the w nullcline provides for **thresholded oscillation**....a stable fixed point destabilized to produce relaxation oscillations. We will look at this more closely next time... Next, we will further analyze the simple non-linear oscillator systems...

	n = 1	n = 2 or 3	n >> 1	continuum
Linear	exponential growth and decay single step conformational change fluorescence emission pseudo first order kinetics	second order reaction kinetics linear harmonic oscillators simple feedback control sequences of conformational change	electrical circuits molecular dynamics systems of coupled harmonic oscillators equilibrium thermodynamics diffraction, Fourier transforms	Diffusion Wave propagation quantum mechanics viscoelastic systems
Nonlinear	fixed points bifurcations, multi stability irreversible hysteresis overdamped oscillators	anharmomic oscillators relaxation oscillations predator-prey models van der Pol systems Chaotic systems	systems of non- linear oscillators non-equilibrium thermodynamics protein structure/ function neural networks the cell ecosystems	Nonlinear wave propagation Reaction-diffusion in dissipative systems Turbulent/chaotic flows