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So, to make a direct contrast with our recent lecture, today we explore the non-trivial emergent 
properties of non-linear dynamical systems. 
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So, we will have several examples of non-linear dynamical systems in biology, 
small to large: 

(1) the all-or-nothing, irreversible MAPK switch (Jim Ferrell, Stanford) 
(2) the van der Pol oscillator and the action potential (Fitzhugh-Nagumo, NIH 

and ?) 
(3) the quantum bump in invertebrate vision (RR, Alain Pumir, and Boris Shraiman, 

CNRS and UCSB) 
(4) the problem of proteins (RR) 

 



With that, let’s look at a very simple first-order non-linear differential equation 
system… 

 

Jim Ferrell 
 

As you will see, this system exhibits bistability and extreme hysteresis…. 
properties that fundamentally emerge from the non-linearity. 

But. first, what do these words mean?



First,….let’s consider monostability in a biological setting 
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Xenopus oocyte maturation...our model system for today 
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In principle, a single molecule of 
cdc2 could provide a switch-like 
response... 



Ok, so what is the molecular biology underlying these phenomena? 

 

J.E. Ferrell and E.M. Machleder, Science (1998), 280: 895-8

In principle, a single molecule of cdc2 could 
provide a switch-like response...but even if so, its 
not clear how irreversibility arises... 
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So..... 



Ok, so what is the molecular biology underlying these phenomena? 

 

J.E. Ferrell and E.M. Machleder, Science (1998), 280: 895-8

Well, this is an emergent property of the network 
of signaling reactions..... 
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The Rate-Balance Plot...a clever graphical technique 

 

Where is steady-state?  That is 
where is a fixed-point of this 
system? 
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The Rate-Balance Plot...a clever graphical technique 
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The Rate-Balance Plot...a clever graphical technique 

 

The Michalean response with no calculations!  A 
graphical way of “seeing” system behavior. 
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The Rate-Balance Plot...a clever graphical technique 
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Analysis of the Michaelean response.... 

 

How do we test for stability of a steady-state? 
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So, to get bistability, we need to add something.... 

 

Analysis of the Michaelean response.... 

 



J.E. Ferrell and W. Xiong, Chaos (2001), 11: 227-236

Now, linear positive feedback... 
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Let’s consider the shape of the forward and back rates... 

 

The feedback rate is in the form of a parabola, the basal 
forward rate tilts it, and the back rate is still linear 
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Let’s consider the shape of the forward and back rates... 

 

Do we recognize the equation?  And what set’s the height 
of the parabola? 
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So, how does this linear positive feedback make the system 
behave?  Let’s forget the basal rate for now (i.e. [S] = 0), 
and just look at the feedback rate... 
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How many steady states are there now? 
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How can we “fix” the instability of the off-
state?  Well.... 
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We can lower the feedback rate constant k2 ... 
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We can lower the feedback rate constant 
k2 ...but what happened?   The on-state 
disappeared! 
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Ultrasensitive positive feedback... 
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By the way, how can one make ultrasensitive 
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And...again we look at the system with no 
stimulus (i.e. [S] = 0)... 
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Getting over the threshold.... 

 

And now, we have an irreversible, 
bistable switch... 
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Getting over the threshold.... 

 

Hysteresis is interesting...it’s a way of the 
cell “remembering” some history of 
events. 

 



Xenopus oocyte maturation...so this is now it works in fact 

 

An ultrasensitive positive feedback in the MAP-kinase cascade 
underlies the all-or-nothing, irreversible, switch-like 
characteristics of oocyte maturation.   

Fundamentally due to the non-linearity introduced by the feedback 
system. 

 



Next, we will consider the van der Pol oscillator and the FitzHugh-Nagumo model for the action 
potential in detail. 
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