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So, today we explore the truly astounding emergent complexity inherent in even simple non-linear 
dynamical systems. 
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So, today: 

(1) A reminder of the reducibility, simplicity, and predictability of linear 
systems….we needed to understand what is not “complex” first! 

(2) A case study of three small non-linear dynamical systems that exhibit 
remarkable emergent and non-obvious behaviors that linear systems 
cannot do.  All relevant for biology… 

 



We begin with a reminder of linear systems... 

 



We begin with a reminder of linear systems... 

 



or….

…a second-order biochemical reaction, for example



The general solution to second-order linear system…

…a vector of initial conditionsgiven

….where A is the characteristic matrix.  It’s 
properties control all behaviors of the 
system



Properties of the characteristic matrix…

…the trace and determinant of the 
matrix



Properties of the characteristic matrix…

…the eigenvalues of A are completely determined by 
the trace and determinant…



…the zoo of all possible behaviors for 
a linear, second-order system

System behaviors: the second order linear case



…stable nodes

System behaviors: the second order linear case



…saddle nodes

System behaviors: the second order linear case



…and spiral nodes when eigenvalues 
are complex numbers

System behaviors: the second order linear case



…both spiral nodes when eigenvalues 
are complex numbers

System behaviors: the second order linear case



Seeing behaviors: the linear harmonic oscillator

Often, it is hard to get analytic solutions.  We need a way of 
“seeing” system behavior….



Seeing behaviors: the linear harmonic oscillator



We can re-write this equation….

Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator

We know how to analyze the behavior, right?



Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator



....for this system, (x,v) represents a 2D “phase space” in which we 
can see the behavior of the system intuitively.

Seeing behaviors: the linear harmonic oscillator



plot the system nullclines….

Seeing behaviors: the linear harmonic oscillator



Seeing behaviors: the linear harmonic oscillator



This is called a “phase portrait”…a way of seeing 
system dynamics.

Seeing behaviors: the linear harmonic oscillator



A summary….

Linear systems are: 

(1) decomposable, such that high-order systems are combinations of first-order systems.  
This is the concept that the behavior of the whole is predictable from knowledge of the 
behavior of the underlying parts. 

(2) understandable; their behavior can be mapped through a study of their so-called 
eigenfunctions.  This is the concept that one can “understand” the properties of linear 
systems by sketching the behavior of these eigenfunctions. 

(3) simple; these systems show single fixed points…whether stable or unstable



A non-linear oscillator...

Here is the non-linearity….with mu controlling the 
degree of non-linearity.



A non-linear oscillator...



Re-writing the equations in a more intuitive way....

A non-linear oscillator...



A non-linear oscillator...



A non-linear oscillator...



A non-linear oscillator...



The van der Pol oscillator....



The van der Pol oscillator....



The van der Pol oscillator....



The van der Pol oscillator....



We will study the behavior of these systems in more detail next time, but as a preview, the 
basic model for the neuronal action potential is only a slight variation on the van der Pol 
oscillator…

A non-linear oscillator...



We will study the behavior of these systems in more detail next time, but as a preview, the 
basic model for the neuronal action potential is only a slight variation on the van der Pol 
oscillator…

A non-linear oscillator...

a regenerative, non-linear activation with 
a sharp threshold, an all-or-nothing 
character, and a refractory period 
afterwards… 

 



A non-linear oscillator...

but, Fitzhugh and Nagumo simplified this 
4D set of equations…. 

 

Hodgkin-Huxley (1952)

membrane pot

fast Na+ flux

slow Na+ flux

slow K+ flux



A non-linear oscillator...

this is essentially the van der Pol oscillator, 
with one difference…. 

 

Fitzhugh-Nagumo (1962)

membrane pot

slow K+ flux



A non-linear oscillator...

the linear term to the w nullcline provides 
for thresholded oscillation….you will see 
next time 

 

membrane pot

slow K+ flux



A seemingly innocuous thing….the so-called 
logistic equation 

 

A 1D discrete-time non-linear system



But led to principles have broad application in both basic and applied 
science….and art, social science, and the popular media. 

 



A seemingly innocuous thing….the so-called 
logistic equation 

 

A 1D discrete-time non-linear system



An iterative map gives the current value of a system 
as a function of its previous value… 

 





The equation for constant velocity motion…. 

 





Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 

What is this? 

 



Fixed points….a more formal treatment 

 

What is this?  Well, the higher order 
stuff, which we will conveniently 
ignore…. 

 



Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 



Fixed points….a more formal treatment 

 

So…the fixed point at zero is stable, and 
the one at 1 is not.   

We will do a similar analysis for the 
logistic equation soon. 

 



Iterative Maps 

 



Iterative Maps 

 

Just a way of plotting the “orbit”…or the 
behavior of the equation. 

 



Iterative Maps 

 

In this plot, what would a fixed point 
be?  Are there any? 

 



Iterative Maps 

 

This is a really boring equation…. 

 



Iterative Maps 

 

This is a really boring equation….but it 
does have a fixed point!  What 
about stability of the fixed point? 

 



Iterative Maps 

 



Iterative Maps 

 

Ok…..but where is the identity trace 
relative to the curve? 

 



Iterative Maps 

 

Ok…..but where is the identity trace 
relative to the curve?  Well….it 
depends on r… 

 



Iterative Maps 

 

Ok…..now, where are the fixed points 
and what about stability? 

 

r = 2.9 

 

r = 0.9 

 















What happens for r > 3? 

 



What happens for r > 3? 

 

R. May., Nature (1976) 261, 459-67 



R. May., Nature (1976) 261, 459-67 
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Let’s look at the dynamics of this equation.  We will start with y(0)=0.9, 
and consider 100 iterations at various values of r.  Remember that 
r is basically the feedback strength in our small positive feedback 
reaction scheme.... 

 

The spectacular consequences of a small bit of non-linearity.... 

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 0.9 

 

The spectacular consequences of a small bit of non-linearity.... 
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R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 2.0 

 

The spectacular consequences of a small bit of non-linearity.... 
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R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 2.0 

 

The spectacular consequences of a small bit of non-linearity.... 
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R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 2.9 

 

The spectacular consequences of a small bit of non-linearity.... 
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R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.1 

 

The spectacular consequences of a small bit of non-linearity.... 
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So, this is called a 2-cycle.  That is, both fixed points have lost 

stability, and we have a system that is said to have 
bifurcated. 

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.45 
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Now…what happened?  Even the two-cycle has lost stability!  
What do we have now? 

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.53 

 

The spectacular consequences of a small bit of non-linearity.... 
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So…a 4-cycle.  The system is said to have 

bifurcated again, or period doubling 

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.56 

 

The spectacular consequences of a small bit of non-linearity.... 
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And…a 8-cycle.  Do you notice that the 
intervals over which our system 
bifurcates is getting smaller and 
smaller? 

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.6 

 

And then we come to this….a regime of so-called deterministic 
chaos.  

 

The spectacular consequences of a small bit of non-linearity.... 
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R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.6 

 

And then we come to this….a regime of so-called deterministic 
chaos.  This is characterized by two things: (1) a large 
number of seemingly constantly changing states, and (2) 
extreme sensitivity to initial conditions. 

 

The spectacular consequences of a small bit of non-linearity.... 
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And then we come to this….a regime of so-called deterministic 

chaos.  

 



R. May., Nature (1976) 261, 459-67 

y(0) = 0.9,  r = 3.6 
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y(0) = 0.8999,  r = 3.6 

 

y(0) = 0.9001,  r = 3.6 

 

Deterministic chaos: sensitivity to initial conditions…. (the “butterfly effect”) 

 



Deterministic chaos: the number of states…. 

 

So…what does happen for r > 3? 

 



Deterministic chaos: the number of states…. 

 

The famous diagram of period doublings…. 
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Deterministic chaos: the number of states…. 

 

The notions of self-similarity and scale 
invariance…. 
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Deterministic chaos: the number of states…. 

 

The famous diagram of period doublings….can 
we mathematically understand every 
doubling point and the entrance into the 
regime of chaos? 
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Next, we will further analyze the simple non-linear oscillator systems… 
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