Lecture 7: Seeing patterns in high-dimensional data
R. Ranganathan

Green Center for Systems Biology, ND11.120E

The principles of principal components analysis (PCA) and independent components analysis (ICA)

Karl Pearson 1857-1936

Harold Hotelling 1895-1973

The large variable limit....the idea of apparent complexity and dimension reduction

So... Iow dimensional representations of high-dimensional data

PCA...principal components analysis (also called Karhunen-Loeve transform (KLT), Hotelling transform, eigenvalue decomposition, factor analysis, spectral decomposition).

ICA...independent components analysis (also sometimes called blind-source separation)

What is the problem, fundamentally?

Oftere, we colloet dete about brologiosl systams in many indindued paramoters that epresent our expermente arslysin... Caxe 1 Case 2: \quad z $\frac{1}{5}$

What is the problem, fundamentally?

Offers, we collect date about biologins systems in many individual parameters that represent our experimerthe avelysin...
Cane ${ }^{2}$ guns
Case 2 :

messuremesto

Cave 3 :
biophered measuxents

We initially choose a parametrization of our system...
graves in a genome
ligands applaud to a coll
positions in a protein

What is the problem, fundamentally?

We initially choose a parametrization of our system...
gave in a genome
ligands applied to a coll
position in a proton

Bat ans those the "units" of relevance? Might the data ha lp foll us abort the way these parmmitens are behoving that might lead to a new parametenigaten that is potembenth simpler?

So... a "cluster of genes" \rightarrow a shared biochemical cascade?
a "cluster of ligands" \rightarrow similar trousducter patina
a "cluster of aa position" \rightarrow enzyme active site
what is a good approach for achieving this re-parameterization?

What is the problem, fundamentally?

what is a good approach for achieving this re-parameterization?

First, what is the target goal, quantitatively? We will see...

Hierarchical Clustering
what is a good approach for achieving this re-parameterization?

..but not a statistically rigorous method

Is there a better way?
principal components analysis, or PCA

Stent will an example:

So, fore a fricthumless, massless spring, we knew that of we pull the mass along $y_{10} \rightarrow y_{10}+\delta y$ it will obellite forever around I_{10}.
\Rightarrow a 1-D motion ...t hats A.

But say we are stupid experimentalists (as we are) and do somelliwg arbitron since we doit lever. Getter:

we ax up two cameras to record the action, $A+B$. And... we set up some laberitioy frame of reference axes for recording the position of the mas x_{1}, and x_{2}.
principal components analysis, or PCA

So ... some definition. (1) $\mathbf{8}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$ is called the initial "basis" set. These
 are the unit vector along the x_{1} and x_{2} divectros.
(2) our sbservaitus X are $4 \times N$ obs and are with reference to basis B :

$$
X=\left[\begin{array}{lll}
1 & \\
x_{1 A} & \\
x_{2 A} & \ldots . \\
x_{13} & & \\
x_{23} & & N
\end{array}\right]
$$

2 comers, each producing we ($x_{1} x_{2}$) coordintle at each time t.
principal components analysis, or PCA

So... signal from carmen A might be:

Now we ask ... is the ne another basis set comprised of a (inear combination of original ares that is tetter? yes.... is it obvious?
principal components analysis, or PCA

So ... loose for a tremsformiten of X :

$$
y=P x
$$

where..
(1) P is the trasfarithe matrix that tales $x \rightarrow y$.
(2) P is a rotation and stretching matrix
(3) rows of P are the new basis set for representity the columns of $X \rightarrow$ columns of y.
principal components analysis, or PCA

So ... loose for a tremsformiten of X :

$$
y=P x
$$

where..
(1) P is the trasfarition matrix that tales $x \rightarrow y$.
(2) P is a rotation and stretching matrix
(3) rows of P are the new basis set for represenity the columns of $X \rightarrow$ columess of y.

So .. abut P dow went? what is a "better" basis set? well... one that captures the foot that this is a $1-D$ dynamic rather than a 2-0 dymmic.

The two guiding principles of PCA...
(1) minimise noise... ie. maximize SNR

PCA assumes directus with larger varance in the dataset are "interesting" divedions.

Thus chase P such that the first promespl component" or first basis rector point in The direction of max variance. Then fie this, and search for the second orthogonal vector that nowt murimally accents for variance and so on...

The two guiding principles of PCA...
(2) elmonote redundaricy

low erdurdory

Think abut and tho camens...
so... choose P to minverve redund arey in dimensens if y.

Variance and covariance....

SNR is coptind in the varioinces of the varistluns redundency is capturd in the co-variation of vaructles.
what is co-variotion?
consider two rurables with zero mean:

$$
\begin{aligned}
& a=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\
& b=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
\end{aligned}
$$

Variance and covariance....
consider two parables with zero mean:

$$
\begin{aligned}
& a=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} \\
& b=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}
\end{aligned}
$$

the variance of a oud \bar{b} are defined as:

$$
\sigma_{a}^{2}=\left\langle a_{i} a_{i}\right\rangle_{i} \text {... the }\rangle \text { means expectitinu or averge won }
$$

$$
\sigma_{b}^{2}=\left\langle b_{i} b_{i}\right\rangle_{i}
$$

the covanome of $\dot{A} \mid \vec{b}$ io:

$$
\sigma_{a b}^{2}=\left\langle a_{i} b_{i}\right\rangle_{i}
$$

Variance and covariance....
consider two parables with zero mean:

$$
\begin{aligned}
& a=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} \\
& b=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}
\end{aligned}
$$

$$
\sigma_{a b}^{2}=\left\langle a_{i} b_{i}\right\rangle_{i}
$$

now.. ibvarily,
$\sigma_{a b}^{2}=0$ inf a and b ane not completed

$$
\sigma_{a b}^{2}=\sigma_{a}^{2}=\sigma_{b}^{2} \text { f } a=b .
$$

In rector notition,

$$
\begin{aligned}
& \sigma_{a b}^{2}=\frac{1}{n-1} a b^{\top} \quad \ldots \\
& \\
& \\
& \\
& {\left[a_{1}, a_{2}, \ldots, a n\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[a_{1} b_{1}, a_{2} b_{4}, \cdots \cdots a_{n} b_{n}\right]}
\end{aligned}
$$

Now, this is for two vectors...

Variance and covariance....

Now, reanember we have a matrix of obseroton:

$$
x=\left[\begin{array}{l}
x_{1} \cdots \cdots \cdots \\
\vdots \\
x_{m} \\
1 \xrightarrow[N]{ } \text { abs. } \\
\cdots \text { an } m \times n \text { matrix. } \\
\\
\\
\end{array}\right.
$$

Exch row is a maserevert vavioshe, and columns are dosevations of that variate.
So, the covanotion matrix is an $m \times m$ matrix:

$$
S_{x} \equiv \frac{1}{n-1} \times x^{\top}
$$

This is the covariance matrix for a set of variables (here, for rows of our data matrix)

Variance and covariance....

Now, reanember we have a matrix of sbecroton:

$$
X=\left[\begin{array}{lll}
x_{1} \cdot \cdots \cdots \cdots \\
\vdots \\
x_{m} & \cdots
\end{array}\right] \quad \cdots \text { an man matrix. }
$$

Exch row is a maserevert vavioshe, and columns are dosevations of that variate.
So, the covanotion matrix is an $m \times m$ matrix:

$$
S_{x} \equiv \frac{1}{n-1} \times x^{\top}
$$

properties:
L. The i y^{n} value $f^{s} x$ is the co-varating of x_{i} and y_{j}
2. S_{x} is a square. symmetinc mam matrix
3. The diagued terms are the variances of seel x_{i}
4. The off-diugorl terms are the co-vanarces $\left\{x_{2}, x_{j}\right.$.

So ... becel to tha problem. What do we wart for P sueb that

$$
y=P x ?
$$

well, wat do we wart for Sy?
(1) If we weat to minimize redendancy, we wart each transfand vurcoble in Y to ce-vany as lithle es possiche. Thus we want a tranafomation where all the off-diogove temas in Sy are zevo. \Rightarrow wait to diagonalice $S_{y} .\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots \\ 0 & \lambda_{2} & \cdots \\ \vdots & \ddots & \ddots & \lambda_{m}\end{array}\right]$
(2) If we want to mavimice SNR, then chrove the new bosis recters in an order where marimal vanouce is in the forst basis vector.... and so on.

So ... find some matrix P where :

$$
y=P x
$$

such that

$$
S_{y} \equiv \frac{1}{n-1} y Y^{\top}
$$

is diagonalized. Then the rows of P are the weights for

$$
\left[\begin{array}{lllll}
\lambda_{1} & 0 & 0 & \cdots & . \\
0 & \lambda_{2} & & & \\
\vdots & & \ddots & \\
\vdots & & & \lambda_{m}
\end{array}\right]
$$ each pronecol amponel of $y-x$.

The path to finding P is eigenvalue decomposition of the covariation matrix of X, the initial variables...

PGA
To do the... begin by re. witty By:

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} y y^{\top} \\
& =\frac{1}{n-1}(P x)(P x)^{\top} \\
& =\frac{1}{n-1} P x x^{\top} P^{\top} \\
& =\frac{1}{n-1} P\left(x x^{\top}\right) P^{\top} \\
S_{y} & =\frac{1}{n-1} P A P^{\top}, \text { where we define } A \equiv x x^{\top} .
\end{aligned}
$$

Recognize the matrix \mathbf{A} ? What is it?

PCA
To do tha... begne $\begin{gathered}\text { y re-mitity } S_{y} \text { : }\end{gathered}$

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} y y^{\top} \\
& =\frac{1}{n-1}(P x)(P x)^{\top} \\
& =\frac{1}{n-1} P x x^{\top} P^{\top} \\
& =\frac{1}{n-1} P\left(x x^{\top}\right) P^{\top} \\
S_{y} & =\frac{1}{n-1} P A P^{\top} \quad \text {, uheove ve defome } A \equiv x x^{\top} .
\end{aligned}
$$

A is aymuetic mem motisix. Naw, it tuens at thet a ymumetre mative is diegomited by a matrix of is so-colled eigenvertes:
$A=E D E^{\top}$, where
D is a diogoul matrix, and E in the matrix of eigen wertax of A

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \cdots \\
0 & \lambda_{2} & \cdots & \\
\vdots & & \ddots & \\
\vdots & & \ddots & \lambda_{m}
\end{array}\right]
$$

In this process, a matrix is decomposed into its eigenvalues and associated eigenvectors....let's understand this more closely...

Basic concepts from linear algebra...

A matrix 4 m rows an n cols is:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \\
\vdots & & \ddots & \\
a_{m 1} & & & a_{m n}
\end{array}\right] \text {, and } a_{i j} \text { are elements of } A \text {. }
$$

A square matrix is a matrix with equal number f rows and cols.
Thar The order of - square matrix is the no. of rows (or columns).

Basic concepts from linear algebra...

A matrix 4 m rows an n cols is:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \\
\vdots & & \ddots & \\
a_{m 1} & & & a_{m n}
\end{array}\right] \text {, and } a_{i j} \text { are elements of } A \text {. }
$$

A square matrix is a matrix with equal number of rows and cols. Thess The order of a square matrix is the mo. of rows (or columns).

Every square m.frix has a scalar value associated with if ... The
determinant. For a second order matrix...

$$
D=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Higher oder determinants are a pain in the ass use a

Basic concepts from linear algebra...

There ax some intersising propertion of matrix determinmify. of most use to us now is that of the $\operatorname{det}(A) \neq 0$, Arlen A is sand to be non-singular. If so, then there exists an inverse matrix A^{-1} such tat:

$$
A^{-1} A=I
$$

I is the identity matrix:

$$
I=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 1 & \cdots & \\
\vdots & & & \\
0 & & & 1
\end{array}\right]
$$

So ... determinate are valuable sine like bell wo abut the invertibilty of square matrices.

So... now for ecyenveluen and ergenvectors
Lef A be a square molnx $(n \times n)$. A number is an eigenvalue of A of there erists a nun-2evo vertor $\stackrel{\rightharpoonup}{v}$ such that:

$$
A \stackrel{\rightharpoonup}{v}=\lambda \stackrel{\rightharpoonup}{v}
$$

If ro, then $\stackrel{\rightharpoonup}{v}$ is called an eigenuretor $\& A$ coversponding to λ.

Computing eigennilues and engouvretas:

So . .

$$
A_{\vec{v}}^{\overrightarrow{2}}=\lambda \vec{v}
$$

rewrite as

$$
(A-\lambda I) \stackrel{\rightharpoonup}{v}=0
$$

Now... we went a now-zers \vec{v} that member this equation true. In this case the matrix $(A-\lambda I)$ must not be invertible.

So . .

$$
A \stackrel{\rightharpoonup}{v}=\lambda \vec{v}
$$

rewrite as

$$
(A-\lambda I) \stackrel{\rightharpoonup}{v}=0
$$

Now... we went a now-zers \vec{v} that member this equation true. In this case the matrix $(A-\lambda I)$ must not be invertible.
why? If A was, then...

$$
\begin{aligned}
(A-\lambda I)^{-1}(A-\lambda I)_{v} \stackrel{\rightharpoonup}{v} & =(A-\lambda I)^{-1} 0, \text { or... } \\
\stackrel{\rightharpoonup}{v} & =0
\end{aligned}
$$

So for $(A-\lambda I)$ to G nom-miordible, t must be sigular. That is,

$$
\operatorname{det}(1-\lambda I)=0
$$

So ..

$$
A_{v}^{\vec{v}}=\lambda \stackrel{\rightharpoonup}{v}
$$

rewrite as

$$
(A-\lambda I)^{d}=0
$$

Now... we want a non-zers \vec{v} that member this equestine true. In this case the matrix $(A-\lambda I)$ must not 6 invertible.

Why? If A was, then...

$$
\begin{aligned}
(A-\lambda I)^{-1}(A-\lambda I)_{v}^{\vec{v}} & =(A-\lambda I)^{-1} 0, \text { or... } \\
\stackrel{\rightharpoonup}{v} & =0
\end{aligned}
$$

So for $(A-\lambda I)$ to G non-mierdible, t must be sigular. That is,

$$
\operatorname{det}(1-\lambda I)=0
$$

The equation $p(\lambda)=\operatorname{dat}(A-\lambda I)$ is called the "chorectanstre polynomial of A, and the eigenvalues of A are just the roots of this polynomial... values of λ where the polynomial guts to zero

Let's do a calculation..

$$
A=\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right]
$$

First, we compute the eigenvalues...

Let's do a calculation..

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & -4 \\
-1 & -1-\lambda
\end{array}\right] \\
&=(2-\lambda)(-1-\lambda)-(-4)(-1) \\
&=\lambda^{2}-\lambda-6 \\
&=(\lambda-3)(\lambda+2)
\end{aligned}
$$

The rants are $\lambda=3$ and $\lambda=-2$... these are the eygennluen of A.

And now, for the eigenvectors...

To gt associatd eigenverton.... solve the 3ystem of 'gusithess foe each eigenvalue.

$$
A \stackrel{\rightharpoonup}{v}=\lambda \vec{v} \quad \text { or } . . . \quad(A-\lambda I) \vec{v}=0
$$

for $\lambda=3 \cdots$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2-3 & -4 \\
-1 & -1.3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \begin{array}{l}
-v_{1}-4 v_{2}=0 \\
-v_{1}-4 v_{2}=0
\end{array} \quad 2 \text { eqns . } 2 \text { untenowns. So ... } \quad \vec{v}=\left[\begin{array}{c}
0.97 \\
-0.24
\end{array}\right]
\end{aligned}
$$

for $\lambda=-2 \ldots$

$$
\left[\begin{array}{cc}
2-(2) & -1 \\
-1 & -1-(-2)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { so... } \vec{v}=\left[\begin{array}{l}
0.207 \\
0.707
\end{array}\right]
$$

Now for the key point....

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v}, 20 \cdots \\
{\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
0.17 & 0.707 \\
-0.24 & 0.707
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
0.47 & 0.707 \\
-0.21 & 0.707
\end{array}\right]}
\end{gathered}
$$

Do you see that by multiphingly the egenvertion we hove diagovilical A?

Back to PCA...
we want te find P such that $y=P X$ where:

$$
S_{y}=\frac{1}{n=1} y y^{\top}
$$

is diagonalized. we conclude that...

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} P\left(x x^{\top}\right) P^{\top} \\
& =\frac{1}{n-1} P A P^{\top} \text { where } A=v x^{\top}
\end{aligned}
$$

Except for the sealing term, A is the co-varostune matrix of the oriyiul data variables.

Back to PCA...
we want te fird P such that $y=P X$ where:

$$
S_{y}=\frac{1}{n=1} y y^{\top}
$$

is diagonalized. we cuncluade that...

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} P\left(x x^{\top}\right) P^{\top} \\
& =\frac{1}{n-1} P A P^{\top} \text { where } A=v x^{\top}
\end{aligned}
$$

Except for the scaling temen, A is the co-varistine motrix of the oriyiul data variables.

Sinee A is a syourotinc mam motrix, we can diegonolie it by fivding is ecyenvetiox ...
$A=E D E^{\top}$. where the matrx D is a diagoul motine ot elypuraties of A, and E contoms the conespondy eyenvectos.

Back to PCA...
we want te find P such that $y=P X$ where:

$$
S_{y}=\frac{1}{n=1} y y^{\top}
$$

is diagonalized. We conclude that...

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} P\left(x x^{\top}\right) P^{\top} \\
& =\frac{1}{n-1} P A P^{\top} \text { whee } A=v x^{\top}
\end{aligned}
$$

$$
A=E D E^{\top} \text {. }
$$

So, what should we choose for P, so that By is diagonalized?

Back to PCA...

$$
S_{y}=\frac{1}{k=1} P A P^{\top}
$$

Now the trick is to select $P=E^{\top}$; that is lad's proporeto choose P to contain (as rows) the eizenuretar of the covarmation matrix of oryiml variables.

$$
\begin{array}{ll}
A=V x^{\top} & \text { (the covariance matrix of initial variables) } \\
A=E D E^{\top} & \text { (the eigenvalue decomposition of } A \text {) } \\
P^{\top} & \text { and so, } \\
A=P^{\top} D P &
\end{array}
$$

Back to PCA...

$$
S_{y}=\frac{1}{n=1} P A P^{\top}
$$

Now the trick is to select $P=E^{\top}$; that is lat's propose t choose P to contain (as rows) the eigenvector of the covarmition matrix of oryiml variables.

Then...

$$
\begin{aligned}
S_{y} & =\frac{1}{n-1} P\left(P^{\top} D P\right) P^{T}, \text { since } A=P^{\top} D P \\
& =\frac{1}{n=1}\left(P P^{\top}\right) D\left(P P^{T}\right) \\
& =\frac{1}{n-1}\left(P P^{-1}\right) O\left(P P^{-1}\right) \\
S_{y} & =\frac{1}{n-1} D
\end{aligned}
$$

So that's it ... ourchaico of $P=E^{\top}$ diagonalizes By just as we want id to.

Summary of PCA...
Given an initial (non-optimal) parameterization of our system....

So... loole for a tronsformiter of X :

$$
y=P x
$$

P shuild te chaven to:
(1) maximice SNR $\cdot \frac{\sigma_{\text {sig }}^{2}}{\sigma_{\text {maise }}^{2}}$
(5) eliminite indundancy ... that is mimimize all offdiayoul elemento of the $\operatorname{cov}(x) \equiv S_{x}$

Summary of PCA...

Solution to RCA problem amounts to eigenvalue decomposition
of S_{X}. of S_{x}.

$$
S_{x}=E^{\top} D E \text {, when } D=S_{y}
$$

Remambor...

The eigenvalue ($D_{1}, \frac{1}{2}$) represent the granth of information (variance) in S_{x} ruptured, and each associate expenveretor $\left(\vec{v}_{1}, \vec{v}_{2} \ldots\right)$ gimp the weight for combining, the oreyuml rarrath $\left(x_{1}, x_{2} \ldots\right)$ to form-ilm new variate $\left(y_{1}, y_{2} \ldots.\right)$.

Summary of PCA...

Solution to REA problem amounts to eigenvalue decomposition of S_{x}.

So ... if we calculate the eigenvolues and eigenvection of the S_{x} molias and we calculite $Y=P X$ suech that $P=E^{\top}$, then S_{y} is diagoociend. $\Rightarrow P C A$

Them to mevimise SNR, we raule the eigenndues (the diagal elements (S_{y}) by unguitude. The ecgenvection copresponding to the domineme e"genvaluce are the prinapel componerts. .. directions alony which the onyinel date selt is maximolly decavelated and which contsin most of the sigmel.

Example from "econophysics"...a rational investment strategy for optimizing return

The idea is to understand the natural breakdown of the economy by looking at how stocks are correlated in their market performance....

An analogy from economics

To understand the natural breakdown of the economy by the statistics of stock market performance....
(1) Make a covariance matrix for the performance of a bunch of stocks over a time window (here, 7 years from the S\&P 500).

Now, this matrix is contaminated with two kinds of noise.....(1) sampling noise (limited time series), and (2) global correlations of stocks due to overall market performance

An analogy from economics

To understand the natural breakdown of the economy by the statistics of stock market performance....
(1) Make a covariance matrix for a bunch of stocks (here, from the S\&P 500).
(2) Compute the so-called eigenvalues of the covariance matrix. Each eigenvalue represents a collection of stocks that move together in the market.

FIG. 4. $P(\mathrm{~K})$ for C constructed from daily retums of 422 stocks for the 7 -yr period 1990-1996. The solid curve shows the RMT result $P_{\mathrm{ma}}(\lambda)$ of Eq. (6]) using $N=422$ and $L=1737$. The dotdashed curve shows a fit to $P(\lambda)$ using $P_{m(1)}(\lambda)$ with λ_{+}and λ_{-}as free parameters. We find similar results as found in Fig. 3(a) for 30 -min returns. The largest eigenvalue (not shown) has the value $\lambda_{422}=46.3$.

An analogy from economics

To understand the natural breakdown of the economy by the statistics of stock market performance....
(1) Make a covariance matrix for a bunch of stocks (here, from the S\&P 500).
(2) Compute the so-called eigenvalues of the covariance matrix. Each eigenvalue represents a collection of stocks that move together in the market.
(3) Find the "significant" eigenvalues by making a random correlation matrix.
(4) Analyze the remaining eigenvalues....

FIG. 4. $P(\mathrm{~K})$ for C constructed from daily retums of 422 stocks for the 7 -yr period 1990-1996. The solid curve shows the RMT result $P_{\mathrm{ma}}(\lambda)$ of Eq. (6]) using $N=422$ and $L=1737$. The dotdashed curve shows a fit to $P(\lambda)$ using $P_{\text {ma }}(\lambda)$ with λ_{+}and λ_{-}as free parameters. We find similar results as found in Fig. 3(a) for 30 -min returns. The largest eigenvalue (not shown) has the value $\lambda_{422}=46.3$.

FIG. 13. Schematic illustration of the interpretation of the eigenvectors corresponding to the eigenvalues that deviate from the RMT upper bound. The dashed curve shows the RMT result of Eq. (6).

A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis

Kevin A. Janes, ${ }^{1,2 *}$ John G. Albeck, ${ }^{2,3 *}$ Suzanne Gaudet, ${ }^{2,3}$
Peter K. Sorger, ${ }^{1,2,3}$ Douglas A. Lauffenburger, ${ }^{1,2,3}$
Michael B. Yaffe ${ }^{1,2,3 \dagger}$

Abstract

Signal transduction pathways control cellular responses to stimuli, but it is unclear how molecular information is processed as a network. We constructed a systems model of 7980 intracellular signaling events that directly links measurements to 1440 response outputs associated with apoptosis. The model accurately predicted multiple time-dependent apoptotic responses induced by a combination of the death-inducing cytokine tumor necrosis factor with the prosurvival factors epidermal growth factor and insulin. By capturing the role of unsuspected autocrine circuits activated by transforming growth factor- α and interleukin- 1α, the model revealed new molecular mechanisms connecting signaling to apoptosis. The model derived two groupings of intracellular signals that constitute fundamental dimensions (molecular "basis axes") within the apoptotic signaling network. Projection along these axes captures the entire measured apoptotic network, suggesting that cell survival is determined by signaling through this canonical basis set.

Many measurements in a cellular apoptotic signaling network...but a small number of reactions suffice to predict the probability of apoptosis...

Limitations and extensions of PCA...

Now ... wot on the assumptras and Imaititen of PCA? Thees will lead us to ICA.
(i) Linearity. Assumes that anginal rarodes contribute add dire to the informontue. That is, assumes no higher order convection in the data that ingherico the patten of pairwise correlation.
(2) Assumes the the mean and vanance of date variables sufficiently captures their distribution.

When are these things true? When are they not?

Limitations and extensions of PCA...
well... the onfy dobister that'is fully chanetaged C_{y} it raviance and mean is the normal or Gaussion dishibut ... the bell sheped curve.

Thus... fer ren-Gavesson dishonertel raristes. just decovelation (i.e.PCA) moy not iclentily The stahistially indeyendet compeneret. Examplo to follow.

Limitations and extensions of PCA...
what if vaviathes are not Gaussian distributed? Then deconvelative does not mean statistical independence.

Limitations and extensions of PCA...
what if vaviathes are not Gaussian distributed? Then deconelative does not mean statistical independence.

So... te summance. If varisfles are Gaussian dutribatesf, then all the stateshal informonition can be represented by the mean and variance.

Then... for many such variable dimensions. the covuriation undrix cautions all the information about interechers lateen variable o.

Then... PCA finds the independent components. That is... the linear combormion of varnibles that reporsert the statishally independent "new" variables.

Limitations and extensions of PCA...

Now consider this example ...
Let: take 2 variables on orthogoonl dimenuens, each drawn from the identical uniform random distribution...

$$
p(s)=\left\{\begin{array}{cl}
\frac{1}{2 \sqrt{3}}, & \text { if }\left|s_{i}\right|<\sqrt{3} \\
0 & \text { otherwise }
\end{array}\right.
$$

These are truly uncowelatd and stahsholly independent.

Limitations and extensions of PCA...

Now lets mise y. and y_{z} by applying the following transfer:

$$
x=A y,
$$

where $A=\left(\begin{array}{cc}5 & 10 \\ 10 & 2\end{array}\right)$

Now, x_{1} and v_{2} are 3511 uncomelathe rout? still random values drawn form a unifen dishibutien.
But... they are clearly not independent! Consider the value of x, morleed in red. It fully de famines the x_{2} value.

There is information about $\mathbf{x} 2$ in $\mathbf{x 1}$....despite decorrelation!! This is due to the non-Gaussian nature of the distributions of variables...more than just mean and variance required to represent the statistics...

Limitations and extensions of PCA...

Statistical independence is a moe ranees concept than de. correlation. Independence implies decorvelation, but deconelation does not demonstrate indapersdence areapt for the case of Gaussian distributed varrestes.

Pat simply... statishal indeperdere mans that

$$
p(a \cdot b)=p(a) \cdot p^{(b)}
$$

\Rightarrow the joint distribution of the variables is unconditionally factorizab6 into the marginal distribuntous.

This only la uppers if not only the covariance but all higher order depenctucics are zero.

Limitations and extensions of PCA...

Statistial indeperdence is a moe rgannes cencedt than de. corvelation. Independence implies decorvelation, but deconelation does not demonstrite indapersdence areapt for the case of Ganssian distributel varrestes.

If the dela contain higher ender conelatiovs, then varcibleo will likely net be baussion distibuntad, and PCA is Aepectid to foil.

Limitations and extensions of PCA...

Statistical independence is a moe ranees concept than de. correlation. Independence implies decorvelation, but deconelation does not demonstrate independence rept for the case of Gaussian distributed varrestes.

If the dele contain higher under correlations, then variables will likely mat be Gaussian distiobutiad, and PCA is expected to foil.

So, Independent Components Analysis (ICA) is an extension of PCA to find new variables that are not just decorrelated, but truly statistically independent.

The idea of ICA...

As we said, if tho varioshs are statistically indeperedet. Then they are uncous(ited. If so, than any function operation on either or both variables will result in new vanatle that are still uncumelatid.

For example. if y, and y_{2} are inclupendert, then

$$
p\left(y_{1} y_{2}\right)=p\left(y_{1}\right) \cdot p\left(y_{2}\right)
$$

But also,

$$
p\left(h\left(y_{1}\right), g\left(y_{2}\right)\right)=p\left(h\left(y_{0}\right)\right) \cdot p\left(y\left(y_{2}\right)\right)
$$

This is trice fer any h or g as long as they are well-behavel (ie. condinuoucty differentiable) functions.

The idea of ICA...

For example, if y, and y_{2} are inclupeuchit, then

$$
p\left(y_{1} y_{2}\right)=p\left(y_{1}\right) \cdot p\left(y_{2}\right)
$$

But also,

$$
p\left(h\left(y_{1}\right), y\left(y_{2}\right)\right)=p\left(h\left(y_{1}\right)\right) \cdot p\left(y\left(y_{2}\right)\right)
$$

- PCA finds new variables Y giver data X for the special cure in which $h \leqslant g$ ave linear functions.
- ICA looks for new varistho y green data x for the general case where hoy are some nom-lineave functions. Thad is, it lodes fer a tronstamation aloes variables y remain uncorrelated despite e nom-lmoar franstermition.

Example... "the cocktail party problem"

Given audio recordings from some number of microphones placed randomly in the room, how can we extract the individual conversations without knowledge of the number of conversations or the information content of the conversations?

How can we quantitatively extract the information content in this matrix? The signal processing method of Independent Component Analysis (ICA)

The method works by using the principle that source signals are statistically independent of each other.

Example...discovering patterns of coevolution in protein sequence alignments

We can make a matrix of the correlated conservation (or coevolution) of pairs of sequence positions....

For example, in the S1A serine proteases (1470 sequences from diverse eukaryotic organisms)

Clustering....

The basic idea is to transform the current variables (the sequence positions) into new variables (eigenmodes) that have two basic properties:
(1) they capture the information in a few new dimensions as possible (i.e. maximize variance per principal component).
(2) they are maximally non-redundant (i.e minimize co-variation in the transformed variables
eigenvalues eigenvectors

Mathematically, this amounts to computing the eigenvalues and eigenvectors of the SCA matrix...

$$
\overrightarrow{A v}=\lambda \vec{v}
$$

Here, the eigenvalues represent the quantity of variance captured in each new dimension, and each associated eigenvector contains the weights of each of the original sequence positions.

SCA matrix

eigenvalues

The eigenvalue spectrum

how many dimensions to keep?

The eigenvalue spectrum...and its random matrix counterpart

FIG. 4. $P(\lambda)$ for C constructed from daily retums of 422 stocks for the 7 -yr period 1990-1996. The solid curve shows the RMT result $P_{\mathrm{ma}}(\lambda)$ of Eq. (6]) using $N=422$ and $L=1737$. The dotdashed curve shows a fit to $P(\lambda)$ using $P_{m(1)}(\lambda)$ with λ_{+}and λ_{-}as free parameters. We find similar results as found in Fig. 3(a) for 30 -min returns. The largest eigenvalue (not shown) has the value $\lambda_{422}=46.3$.

Pilereu et al. (2002), Physical Review E 65, 066126
Laloux et al. (1999), PRL 83, p. 1467
Pilereu et al. (1999), PRL 83, p. 1471

The top three eigenvectors....

As we know ad nauseum, eigenvectors need not represent maximally independent directions....
kmax=3;
[SA.Vp,W]=rot_ica(SA.V,kmax);

ICA provides a "better" representation of quasiindependent modes.

Another example....

ICA provides a "better" representation of quasiindependent modes. We will come back to this later

The large variable limit....linear decomposition methods

