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The large variable limit….the idea of apparent complexity and dimension reduction 
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So... low dimensional representations of high-dimensional data 

PCA…principal components analysis (also called Karhunen-Loeve transform 
(KLT), Hotelling transform, eigenvalue decomposition, factor analysis, 
spectral decomposition). 

ICA...independent components analysis (also sometimes called blind-source 
separation) 

 



What is the problem, fundamentally? 
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We initially choose a parameterization 
of our system... 

 



What is the problem, fundamentally? 

We initially choose a parameterization 
of our system... 

 



what is a good approach for achieving this re-parameterization?   

 



What is the problem, fundamentally? 

what is a good approach for achieving this re-parameterization?  

 

First, what is the target goal, quantitatively?   
We will see...



Hierarchical Clustering 

...but not a statistically rigorous method 

 

what is a good approach for achieving this re-parameterization?  

 



Is there a better way?  

 



principal components analysis, or PCA 
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The two guiding principles of PCA... 
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Variance and covariance…. 
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Now, this is for two vectors... 

 

Variance and covariance…. 

 



Variance and covariance…. 

 

This is the covariance matrix for a set of variables 
(here, for rows of our data matrix) 

 



Variance and covariance…. 

 



PCA 

 

But, how do we solve for P? 

 



PCA 

 

The path to finding P is eigenvalue decomposition of the covariation 
matrix of X, the initial variables... 

 



PCA 

 

Recognize the matrix A?  What is it? 

 



PCA 

 



In this process, a matrix is decomposed into its eigenvalues and 
associated eigenvectors….let’s understand this more 
closely… 

eigenvector 1
eigenvector 2

The eigenvalue decomposition…



Basic concepts from linear algebra… 
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Let’s do a calculation.. 

 

First, we compute the eigenvalues... 

 



And now, for the eigenvectors... 

 

Let’s do a calculation.. 

 



Let’s do a calculation.. 

 



Now for the key point.... 

 



Back to PCA... 
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Back to PCA... 

 

So, what should we choose for P, so that Sy is 
diagonalized? 

 



Back to PCA... 

 

(the covariance matrix of initial variables) 

 (the eigenvalue decomposition of A) 

 

and so, 

 



Back to PCA... 

 

So, to summarize PCA... 

 



Summary of PCA... 

 Given an initial (non-optimal) parameterization of our system.... 

 



Summary of PCA... 

 



Summary of PCA... 

 



CVX XOM C 

Example from “econophysics”...a  rational investment strategy for optimizing return 

The idea is to understand the natural breakdown of the economy by looking at how stocks 
are correlated in their market performance.... 

Pilereu et al. (2002), Physical Review E 65, 066126 
Laloux et al. (1999), PRL 83, p. 1467 
Pilereu et al. (1999), PRL 83, p. 1471



An analogy from economics 

To understand the natural breakdown of the 
economy by the statistics of stock market 
performance.... 

(1) Make a covariance matrix for the 
performance of a bunch of stocks over a time 
window (here, 7 years from the S&P 500). 

Pilereu et al. (2002), Physical Review E 65, 066126 
Laloux et al. (1999), PRL 83, p. 1467 
Pilereu et al. (1999), PRL 83, p. 1471

Now, this matrix is contaminated with two kinds of 
noise.....(1) sampling noise (limited time series), and (2) 
global correlations of stocks due to overall market 
performance
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An analogy from economics 

To understand the natural breakdown of the 
economy by the statistics of stock market 
performance.... 

(1) Make a covariance matrix for a bunch of 
stocks (here, from the S&P 500). 

(2) Compute the so-called eigenvalues of the 
covariance matrix.  Each eigenvalue 
represents a collection of stocks that move 
together in the market. 

(3) Find the “significant” eigenvalues by 
making a random correlation matrix. 

(4) Analyze the remaining eigenvalues....

Pilereu et al. (2002), Physical Review E 65, 066126 
Laloux et al. (1999), PRL 83, p. 1467 
Pilereu et al. (1999), PRL 83, p. 1471



Breakdown of the economy into “sectors”

Pilereu et al. (2002), Physical Review E 65, 066126 



In biology....

Janes et al (2005), Science 310, p. 1646 

Many measurements in a cellular apoptotic signaling 
network...but a small number of reactions suffice to 
predict the probability of apoptosis...



Limitations and extensions of PCA... 

 

[ 

When are these things true?  When are they not? 
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Limitations and extensions of PCA... 

 

[ 

There is information about x2 in x1....despite decorrelation!!  This is due 
to the non-Gaussian nature of the distributions of variables…more than 
just mean and variance required to represent the statistics... 

 



Limitations and extensions of PCA... 
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Limitations and extensions of PCA... 

 

[ 

So, Independent Components Analysis (ICA) is an extension of PCA to find 
new variables that are not just decorrelated, but truly statistically 
independent.   

 



The idea of ICA... 
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The idea of ICA... 

 

[ 



Example… “the cocktail party problem” 

 

Given audio recordings from some number of microphones placed randomly in the 
room, how can we extract the individual conversations without knowledge of the 
number of conversations or the information content of the conversations? 

 



How can we quantitatively extract the information content in this matrix?  The signal 
processing method of Independent Component Analysis (ICA) 

 

The method works by using the principle that source signals are statistically 
independent of each other. 

 

`



Example…discovering patterns of coevolution in protein sequence alignments

We can make a matrix of the correlated conservation (or coevolution) of pairs 
of sequence positions…. 

 



`

For example, in the S1A serine proteases (1470 sequences from diverse eukaryotic 
organisms) 

 

Halabi et al., Cell (2009) 138: 774-86.. 



Clustering….



PCA…..

The basic idea is to transform the current variables (the 
sequence positions) into new variables (eigenmodes) 
that have two basic properties: 

(1) they capture the information in a 
few new dimensions as possible (i.e. 
maximize variance per principal 
component). 

(2) they are maximally non-redundant 
(i.e minimize co-variation in the 
transformed variables



Mathematically, this amounts to 
computing the eigenvalues and 
eigenvectors of the SCA matrix...

Here, the eigenvalues represent the 
quantity of variance captured in each 
new dimension, and each associated 
eigenvector contains the weights of 
each of the original sequence 
positions.



SCA matrix eigenvalues



The eigenvalue spectrum

SCA matrix eigenvalues

how many dimensions to keep?

λ1λ2λ3

λ4



λ1λ2λ3

λ4

The eigenvalue spectrum...and its random matrix counterpart



λ1λ2λ3

λ4

Pilereu et al. (2002), Physical Review E 65, 066126 
Laloux et al. (1999), PRL 83, p. 1467 
Pilereu et al. (1999), PRL 83, p. 1471

An analogy from economics



The top three eigenvectors….

As we know ad nauseum, eigenvectors need not 
represent maximally independent directions....



ICA…

ICA provides a “better” representation of quasi-
independent modes.

ICA

kmax=3;
[SA.Vp,W]=rot_ica(SA.V,kmax);
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ICA provides a “better” representation of quasi-
independent modes.  We will come back to this 
later….

Another example….



The large variable limit….linear decomposition methods 
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