Diffraction: The core theory

Christiaan Huygens
1629 - 1695

Thomas Young
1773 - 1829

William Lawrence Bragg
1890 - 1971

The theory of scattering of light by matter...the basis for x-ray crystallography and an application of the Fourier transform.
Still linear systems at the large variable limit….

<table>
<thead>
<tr>
<th>Linear</th>
<th>Nonlinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 1</td>
<td>exponential growth and decay</td>
</tr>
<tr>
<td></td>
<td>single step conformational change</td>
</tr>
<tr>
<td></td>
<td>fluorescence emission</td>
</tr>
<tr>
<td></td>
<td>pseudo first order kinetics</td>
</tr>
<tr>
<td>n = 2 or 3</td>
<td>second order reaction kinetics</td>
</tr>
<tr>
<td></td>
<td>linear harmonic oscillators</td>
</tr>
<tr>
<td></td>
<td>simple feedback control</td>
</tr>
<tr>
<td></td>
<td>sequences of conformational change</td>
</tr>
<tr>
<td>n >> 1</td>
<td>electrical circuits</td>
</tr>
<tr>
<td></td>
<td>molecular dynamics</td>
</tr>
<tr>
<td></td>
<td>systems of coupled harmonic oscillators</td>
</tr>
<tr>
<td></td>
<td>equilibrium thermodynamics</td>
</tr>
<tr>
<td></td>
<td>diffraction, Fourier transforms</td>
</tr>
<tr>
<td>continuum</td>
<td>Diffusion</td>
</tr>
<tr>
<td></td>
<td>Wave propagation</td>
</tr>
<tr>
<td></td>
<td>quantum mechanics</td>
</tr>
<tr>
<td></td>
<td>viscoelastic systems</td>
</tr>
<tr>
<td></td>
<td>fixed points</td>
</tr>
<tr>
<td></td>
<td>bifurcations, multi stability</td>
</tr>
<tr>
<td></td>
<td>irreversible hysteresis</td>
</tr>
<tr>
<td></td>
<td>overdamped oscillators</td>
</tr>
<tr>
<td></td>
<td>anharmonic oscillators</td>
</tr>
<tr>
<td></td>
<td>relaxation oscillations</td>
</tr>
<tr>
<td></td>
<td>predator-prey models</td>
</tr>
<tr>
<td></td>
<td>van der Pol systems</td>
</tr>
<tr>
<td></td>
<td>Chaotic systems</td>
</tr>
<tr>
<td></td>
<td>systems of nonlinear oscillators</td>
</tr>
<tr>
<td></td>
<td>non-equilibrium thermodynamics</td>
</tr>
<tr>
<td></td>
<td>protein structure/function</td>
</tr>
<tr>
<td></td>
<td>neural networks</td>
</tr>
<tr>
<td></td>
<td>the cell</td>
</tr>
<tr>
<td></td>
<td>ecosystems</td>
</tr>
<tr>
<td></td>
<td>Nonlinear wave propagation</td>
</tr>
<tr>
<td></td>
<td>Reaction-diffusion in dissipative systems</td>
</tr>
<tr>
<td></td>
<td>Turbulent/chaotic flows</td>
</tr>
</tbody>
</table>

adapted from S. Strogatz
The theory of diffraction

a. Light as waves ... basic properties
b. An optical diffraction experiment. To build our intuition.
c. Wave addition and the Argand diagram.
d. X-ray scattering ... simple to complex structures.
e. The molecular transform.
f. X-ray scattering from a crystal of molecules.
g. The crystal transform.
Why x-rays for solving atomic structures?

According to the Abbe (1840-1905) Theory of the microscope, a distance dx is resolvable by light of wavelength λ in ideal circumstances according to the rule:

$$dx = \frac{\lambda}{2 \times \text{N.A.}},$$

where N.A. is numerical aperture.

The point is that with visible light [400-700 nm or 4,100-7,000 Å], we can at best resolve spacings of ~250nm.
Why x-rays for solving atomic structures?

In order to resolve things at atomic scale (1 - 1.5 Å), we need much higher energy (smaller wavelength) electromagnetic radiation, more like 0.5 - 2 Å. This is in the middle of the x-ray portion of the electromagnetic spectrum.
The need for a theory of diffraction...

So... then shouldn't we just build a microscope that uses x-rays rather than visible light?
The need for a theory of diffraction...

So… then shouldn’t we just build a microscope that uses x-rays rather than visible light?

Well… there’s a problem. In microscopes, images are formed by scattering of light by the object and subsequent focusing of the scattered waves by a lens.

But… x-rays are so high in energy that they penetrate everything (almost). Thus, there is no x-ray lens and we cannot focus the scattered radiation into an image.
The need for a theory of diffraction...

So how do we solve this problem?

We collect the diffraction pattern upon irradiating a sample with x-rays and we use the **Theory of diffraction** to calculate the structure from this pattern.

The key concept here is that the diffraction pattern contains all the information required to reconstruct the object. How? And what is the nature of the way in which the diffraction pattern stores the information?
Some mathematical preliminaries…complex numbers!

A complex number has the form...

\[z = x + iy \quad \text{where} \quad i = \sqrt{-1} \]
Some mathematical preliminaries…complex numbers!

A complex number has the form...

\[z = x + iy \quad \text{where} \quad i = \sqrt{-1} \]

\[z = x + iy \]

imaginary part

real part

diagram of complex numbers
Some mathematical preliminaries…complex numbers!

A complex number has the form...

$$z = x + iy$$ where $$i = \sqrt{-1}$$

Can also write it in polar coordinates...

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \arctan \left(\frac{y}{x} \right)$$

Diagram showing the real and imaginary parts of a complex number on the complex plane.
Some mathematical preliminaries…complex numbers!

A complex number has the form...

\[z = x + iy \quad \text{where} \quad i = \sqrt{-1} \]

Can also write it in polar coordinates...

\[r = |z| = \sqrt{x^2 + y^2} \]
\[\theta = \text{arctan} \left(\frac{y}{x} \right) \]

Note that

\[x = r \cos \theta \]
\[y = r \sin \theta \]

So...

\[z = r \cos \theta + i \sin \theta \]
Some mathematical preliminaries…complex numbers!

Now for Euler’s formula... relate exponential function to trigonometric functions!

Power series definition of a few key functions:
Some mathematical preliminaries…complex numbers!

Now for Euler’s formula… relate exponential function to trigonometric functions!

power series definition of a few key functions:

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}\]
Some mathematical preliminaries…complex numbers!

Now for Euler’s formula… relate exponential function to trigonometric functions!

power series definition of a few key functions:

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \]

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \]
Some mathematical preliminaries... Euler's formula
Some mathematical preliminaries... Euler's formula

\[
e^{x + iy} = e^x \cos(y) + ie^x \sin(y)
\]

So...

\[
e^{x + iy} = e^x \left[1 + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \cdots \right]
\]

\[
= e^x \left[1 + \frac{y^2}{2} - \frac{y^4}{4!} + \cdots \right] + i \left[\frac{y}{1!} - \frac{y^3}{3!} + \cdots \right]
\]

\[
= e^x \left[(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \cdots) + i \left(\frac{y}{1!} - \frac{y^3}{3!} + \frac{y^5}{5!} + \cdots \right) \right]
\]
Some mathematical preliminaries... Euler's formula

\[e^{x+iy} = e^x e^{iy} \]

\[= e^x \left[1 + iy + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \ldots \right] \]

\[= e^x \left[1 + iy - \frac{y^2}{2!} - i \frac{y^3}{3!} + \frac{y^4}{4!} + i \frac{y^5}{5!} + \ldots \right] \]

\[= e^x \left[(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \ldots) + i \left(y - \frac{y^3}{3!} + \frac{y^5}{5!} + \ldots \right) \right] \]

\[= e^x \left[\cos y + i \sin y \right] \]

because....

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \]

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \]

\[= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \]

\[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \]
Some mathematical preliminaries...Euler’s formula

This is Euler’s formula. When e^{x+iy} is purely imaginary ($x=0$),

$$e^{iy} = \cos y + i \sin y$$

One of the great formula’s of mathematics....
X-rays are photons.

- E_0 is amplitude
- λ is wavelength (in Å)
- ν is frequency $= \frac{c}{\lambda}$ (in 1/sec or Hz)
- ω is angular frequency $= 2\pi\nu = 2\pi\frac{c}{\lambda}$

Like all electromagnetic radiation, an X-ray is a wave that propagates in time and space. It has characteristic amplitude (E_0 here) which gives its intensity and characteristic wavelength (λ).

The phase (α or ϕ) is how much of one wavelength the wave is displaced from a reference point.

So, given a phase α and a wavelength λ, the wave is displaced by $\alpha \cdot \lambda$ Å.
The basics...

Note that phase is a relative quantity
Now, ways of representing a wave...

![Diagram of wave representation]

Light as a traveling electromagnetic wave....
Now, ways of representing a wave...

\[E(t) = E_0 \cos(\omega t) \]

Let's check this:

- When \(t = 0 \), \(E(0) = E_0 \cos(0) = E_0 \)
- \(t = \frac{1}{c} \), \(E(\frac{1}{c}) = E_0 \cos(\frac{2\pi}{\lambda}) = E_0 \)
- \(t = \frac{1}{2} \frac{\lambda}{c} \), \(E(\frac{\lambda}{2c}) = E_0 \cos(\frac{3\pi}{\lambda}) = -E_0 \)
- \(t = \frac{1}{4} \frac{\lambda}{c} \), \(E(\frac{\lambda}{4c}) = E_0 \cos(\frac{\pi}{2}) = 0 \)
Now, ways of representing a wave...

\[E(t) = E_0 \cos(\omega t) \]

Let's check this...

When \(t = 0 \), \(E(0) = E_0 \cos(0) = E_0 \)

\(t = \frac{1}{c} \), \(E\left(\frac{1}{c}\right) = E_0 \cos\left(\frac{2\pi}{\lambda}\right) = E_0 \)

\(t = \frac{1}{2} \cdot \frac{1}{c} \), \(E\left(\frac{1}{2} \cdot \frac{1}{c}\right) = E_0 \cos\left(\frac{2\pi}{\lambda} \cdot \frac{1}{2}\right) = -E_0 \)

\(t = \frac{1}{4} \cdot \frac{1}{c} \), \(E\left(\frac{1}{4} \cdot \frac{1}{c}\right) = E_0 \cos\left(\frac{\pi}{\lambda}\right) = 0 \)

If a phase shift is added, then...

\[E(t) = E_0 \cos(\omega t + \phi) \]
Two waves can be added, but the result is a little non-intuitive:

So, adding two waves of different amplitude and phase but same wavelength gives a new wave of the same wavelength....but different and new amplitude and phase
Let's understand this...

wave 1: \(E_1(t) = f_1 \cos(wt) \)

wave 2: \(E_2(t) = f_2 \cos(wt + \phi) \)

How to add these? We know that the new wave will have same angular frequency \(\omega = 2\pi \frac{c}{\lambda} \), but how can we predict the amplitude and phase?

Well...

\[
E_2(t) = f_2 \cos(wt + \phi) \\
= f_2 \cos \phi \cos wt - f_2 \sin \phi \sin wt \\
= f_2 \cos \phi \cos wt + f_2 \sin \phi \cos(wt + 90^\circ)
\]
Let's understand this...

Wave 1: \[E_1(t) = f_1 \cos(\omega t) \]

Wave 2: \[E_2(t) = f_2 \cos(\omega t + \phi) \]

How to add these? We know that the new wave will have same angular frequency \(\omega = \frac{2\pi \sin \frac{L}{\lambda}}{L} \), but how can we predict the amplitude and phase?

Well...

\[
E_2(t) = f_2 \cos(\omega t + \phi) \\
= f_2 \cos \phi \cos \omega t - f_2 \sin \phi \sin \omega t \\
= f_2 \cos \phi \cos \omega t + f_2 \sin \phi \cos(\omega t + 90^\circ)
\]

The addition rules:

\[
\cos(A + B) = \cos A \cos B - \sin A \sin B \\
\cos(A - B) = \cos A \cos B + \sin A \sin B \\
\sin(A + B) = \sin A \cos B + \cos A \sin B \\
\sin(A - B) = \sin A \cos B - \cos A \sin B
\]
Let's understand this...

wave 1: \(E_1(t) = f_1 \cos(\omega t) \)

wave 2: \(E_2(t) = f_2 \cos(\omega t + \alpha) \)

How to add these? We know that the new wave will have same angular frequency \(\omega \) \(\left[\omega = 2\pi \frac{f}{\lambda} \right] \), but how can we predict the amplitude and phase?

Well...

\[
E_2(t) = f_2 \cos(\omega t + \alpha)
\]

\[
= f_2 \cos \alpha \cos \omega t - f_2 \sin \alpha \sin \omega t
\]

\[
= f_2 \cos \alpha \cos \omega t + f_2 \sin \alpha \cos(\omega t + 90^\circ)
\]
Let's understand this...

wave 1: \(E_1(t) = f_1 \cos(\omega t) \)

wave 2: \(E_2(t) = f_2 \cos\left(\omega t + \phi\right) \)

How to add these? We know that the new wave will have same angular frequency \(\omega = \frac{2\pi f}{\lambda} \), but how can we predict the amplitude and phase?

Well...

\[
E_2(t) = f_2 \cos\left(\omega t + \phi\right) \\
= f_2 \cos\phi \cos\omega t - f_2 \sin\phi \sin\omega t \\
= f_2 \cos\phi \cos\omega t + f_2 \sin\phi \cos\left(\omega t + 90^\circ\right)
\]

Thus, any wave with an amplitude \(f_2 \) and a phase angle \(\phi \) can be viewed as a sum of two waves with angular frequency \(\omega \):

1. \(f_2 \cos\phi \) [amplitude] and \(0 \) [phase]
2. \(f_2 \sin\phi \) [amplitude] and \(90^\circ \) [phase]
Now let's introduce a simple graphical way of seeing this: the Argand diagram.
\[E_2(t) = f_2 \cos(wt + \alpha) \]

\[= f_2 \cos \alpha \cos wt - f_2 \sin \alpha \sin wt \]

\[= f_2 \cos \alpha \cos wt + f_2 \sin \alpha \cos (wt + 90^\circ) \]

We can plot the two waves as:

[Diagram showing a vector representation of the two waves]
\[E_2(t) = f_2 \cos(\omega t + \phi) \]

\[= f_2 \cos \phi \cos \omega t - f_2 \sin \phi \sin \omega t \]

\[= f_2 \cos \phi \cos \omega t + f_2 \sin \phi \cos(\omega t + 90^\circ) \]

We can plot the two waves as:

Now, remember that given a vector \(\vec{A} \):
We can plot the two waves as:

\[\text{Re} \quad \text{Im} \]

\[f_2 \sin \alpha \quad f_2 \cos \alpha \]

- So... the wave \(E_2(t) = \frac{1}{2} f_2 \cos(wt + \alpha) \) is a vector \(f_2 \) at time \(t=0 \) that makes an angle \(\alpha \) with the real axis. This is the phase shift.

- It has projections \(f_2 \cos \alpha \) with the real axis and \(f_2 \sin \alpha \) with the imaginary axis.
we can plot the two waves as:

\[f_2 \sin \alpha \]
\[f_2 \cos \alpha \]

As the wave propagates in time, it goes around with angular velocity \(\omega t \).

Do you see that its projection on the real axis is the cosine wave?
So, the rotation of the vector in the Argand diagram describes a propagating wave in its projection on the real axis...

Why is this a good way to look at oscillating waves?
Remember, we started wanting to just add two waves:

\[E_1(t) = f_1 \cos wt \]
\[E_2(t) = f_2 \cos (wt + \alpha) \]

To add \(f_1 \) and \(f_2 \) (that is, add waves \(E_1(t) \) and \(E_2(t) \)):

\[f_{\text{new}} = f_{\text{new}} \cos (wt + \alpha_{\text{new}}) \]

So we can add waves by adding their vector diagrams in this representation...
Now... back to the Argand diagram for a further simplification...

we said vector \(A \) goes around and around at speed \(\omega t \). But all of our vectors always rotate at \(\omega t \) since \(\lambda \) never changes in our experiment!

\[
\omega = 2\pi \nu = \frac{2\pi c}{\lambda}
\]

The only things that ever change in a diffraction experiment are \(A \) and \(\alpha \).
Now ... back to the Argand diagram for a further simplification ...

we said vector A goes around and around at speed $w t$. But all of our vectors always rotate at $w t$ since λ never changes in our experiment!

$$w = 2\pi v = \frac{2\pi c}{\lambda}$$

The only things that ever change in a diffraction experiment are A and α.

Thus, let's just simplify and write our wave as:

$$A = \cos \alpha + i \sin \alpha$$

(The i denotes the imaginary axis and specifies a phase shift of 90°.)
So... to be clear:

1. This means a wave with amplitude A and phase ϕ and angular velocity ωt where ω is given by the wavelength.

2. Two waves can be added by standard vector addition to give a new amplitude and phase. Angular velocity never changes if the wavelength does not change.
Two more useful things:

1. We are about to add a lot of waves! So we produce an even simpler notation for our waves:

 \[A = A \cos \omega + i A \sin \omega \]

Now Euler's theorem tells us that this wave can be written as a complex exponential:

\[A \cos \omega + i A \sin \omega = A e^{i \omega} \quad \text{[Euler's theorem]} \]

Nothing special... this is sometimes called the phasor representation of a wave. It has amplitude \(A \) and phase \(\omega \).
Two more useful things:

1. We are about to add a lot of waves! So we produce an even simpler notation for our waves:

 \[A = A \cos \omega + i A \sin \omega \]

 Now Euler's theorem tells us that this wave can be written as a complex exponential:

 \[A \cos \omega + i A \sin \omega = A e^{i \omega} \quad \text{[Euler's theorem]} \]

 Nothing special... this is sometimes called the phasor representation of a wave. It has amplitude \(A \) and phase \(\omega \).

2. The dot product:

 \[\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta \]

 This is the projection of \(\mathbf{a} \) onto \(\mathbf{b} \).
Now, for diffraction... a quick example from optical diffraction
Now, for diffraction... a quick example from optical diffraction

Two slit diffraction.

Blow up...

Extra path length for the source at S_2 is $d\sin\theta$

So... two diffracted rays of light will constructively interfere whenever the extra path length is equal to some integer multiple of the wavelength.

$\delta \sin \theta = m\lambda$

They will destructively interfere when the path length is half of an integer multiple:

$\delta \sin \theta = \frac{m\lambda}{2}$
x-ray diffraction...

A system of two electrons.

X-rays traveling along unit vector \mathbf{q} are scattered in all directions. Let's just focus for now on one direction \mathbf{s}.

$$|s_0| = |s| = \frac{1}{\lambda}$$

So... $\lambda |s_0| = 1$.
X-ray diffraction...

A system of two electrons.

\[\text{X-rays traveling along unit vector } \mathbf{S}_0 \text{ are scattered in all directions.} \]

Let's just focus for now on one direction \(\mathbf{s} \).

\[|S_0| = |S| = \frac{1}{\lambda} \]

So...

\[\lambda |S_0| = 1 \]

X-rays scattered from \(e_2 \) travel further than those scattering from \(e_1 \). Thus, scattered x-rays from \(e_2 \) will lag in phase compared to those from \(e_1 \). Obvious... but how much? And what will the net scattering in direction \(\mathbf{s} \) be?
A system of two electrons...

well, the longer path length for \(e_2 \) is \(\rho + \varrho \).

\[
\rho = \lambda \left(\hat{r} \cdot \hat{s}_0 \right) \quad \text{[The extra distance traveled in the } s_0 \text{ direction]}
\]

\[
= \lambda |\hat{s}_0| ||\hat{r}|| \cos \alpha
\]

\[\hat{r}\]

\[\hat{s}_0\]

\[\alpha\]

\[\Rightarrow \rho \text{ is the fraction of } \lambda \text{ traveled extra by the x-ray scattering from } e_2 \text{ in the } s_0 \text{ direction.} \]
A system of two electrons...

What about q_0?

$$q = \lambda \left(-\frac{1}{r}, \frac{1}{s} \right)$$

(note minus sign on $\frac{1}{r}$!)

q_0 is the fraction of λ travelled extra in the $\frac{s}{r}$ direction.
A system of two electrons...

\[p = \lambda \left(\frac{1}{r} \cdot s_0 \right) \]

\[q = \lambda \left(-\frac{1}{r} \cdot \frac{1}{s_1} \right) \]

What is \(p + q \)?

\[p + q = \lambda \cdot \frac{1}{r} \cdot (s_0 - s_1) \]

\(p + q \) is the total extra distance traveled by the scattered x-ray from \(e_2 \) relative to \(e_1 \).
A system of two electrons...

\[p = \lambda \left(\frac{s}{r} \cdot \vec{s}_0 \right) \]
\[q = \lambda \left(-\frac{s}{r}, \frac{s}{5} \right) \]

What is \(p+q \)?

\[p+q = \lambda \cdot \frac{s}{r} \cdot (s_0 - \vec{s}) \]

\(p+q \) is the total extra distance traveled by the scattered x-ray from \(e_2 \) relative to \(e_1 \).

We can write this as:

\[p+q = -\lambda \frac{1}{r} \cdot \vec{s} \]

where \(\vec{s} = \vec{s} - \vec{s}_0 \) and is called the scattering vector.
The scattering vector...

We can write this as:

\[\rho + q = -\lambda \frac{i}{r} \cdot S \]

where \(\frac{1}{S} = \frac{1}{S} - \frac{1}{S_0} \) and is called the scattering vector.

Note:

\[S_0 \rightarrow S \rightarrow S_0 \]

\[\theta = \frac{1}{\lambda} \sin \theta \]

So... scattering from the e\(^-\) in a direction \(\frac{1}{S} \) can be seen as a reflection from a plane, and \(|S| = \frac{2 \sin \theta}{\lambda} \)

There are \(S \) vectors in every direction.
The phase shift due to the extra path length...

So what is the phase difference of the scattered ray from \(e_2 \) relative to \(e_1 \)?

\[
p + q = -\lambda \cdot \frac{r}{S}
\]

This is path length in units of \(\lambda \).
The phase shift due to the extra path length...

So what is the phase difference of the scattered ray from ε_2 relative to ε_1?

$$\rho + \theta = -\lambda \cdot \frac{d}{d_0}$$

This is path length in units of λ.

By definition a wave goes through one cycle every 2π rotations....

So...
The phase shift due to the extra path length...

So what is the phase difference of the scattered ray from \(e_2 \) relative to \(e_1 \)?

\[\rho + \phi = -\lambda \cdot \frac{r}{\lambda} \cdot S \]

This is path length in units of \(\lambda \).

So... phase shift of \(e_2 \) (taking \(e_1 \) as the reference) is:

\[\alpha = \frac{2\pi \cdot \text{radians}}{\lambda} \cdot \lambda \cdot \frac{r}{\lambda} \cdot S \]

\[\alpha = +2\pi \cdot \frac{r}{\lambda} \cdot S \]
The phase shift due to the extra path length...

So what is the phase difference of the scattered ray from e_2 relative to e_1?

$p + q = -\lambda \cdot r \cdot S$

This is path length in units of λ.

So... phase shift of e_2 (taking e_1 as the reference) is:

$\alpha = \frac{+2\pi \text{ radians}}{\lambda} \cdot \lambda \cdot r \cdot S$

$\alpha = +2\pi r \cdot S$

Key concept... magnitude of α depends on:

1. r... what is that?
2. S... what is that?
The **structure factor** equation...

So... to complete our little system of two e⁻:

Total scattering in direction \vec{S} is:

$$F(\vec{S}) = f_1 e^{2\pi i \vec{r}_1 \cdot \vec{S}} + f_2 e^{2\pi i \vec{r}_2 \cdot \vec{S}}$$

where f_1 and f_2 is the magnitude of scattering for each electron, \vec{r}_1 and \vec{r}_2 are the vectors connecting the position of electron 1 and 2 respectively to the origin, and \vec{S} is the scattering direction we are looking at.
The **structure factor** equation...

So... to complete our little system of two e^{-}:

Total scattering in direction \hat{s} is:

$$F(s) = f_1 e^{i2\pi r_1 \cdot \hat{s}} + f_2 e^{i2\pi r_2 \cdot \hat{s}}$$

Since we defined the origin (in our example) to be at e_1:

$$F(s) = f_1 + f_2 e^{i2\pi r \cdot \hat{s}}$$

This is called the “structure factor” equation for our little system of two electrons...
The **structure factor** equation...

This also solves the case of \(n \) arbitrary electrons located at positions \(\mathbf{r}_n \):

\[
f(s) = \sum_{n} f_n e^{2\pi i \mathbf{r}_n \cdot \mathbf{s}}
\]

The sum of all diffracted rays along direction \(\mathbf{s} \).
The **structure factor** equation...

This also solves the case of n arbitrary electrons located at positions \mathbf{r}_n:

$$ f(s) = \sum_{n} f_n e^{2\pi i \mathbf{r}_n \cdot \mathbf{s}} $$

The sum of all diffracted rays along direction \mathbf{s}.

The structure factor depends on two things for each electron: \mathbf{r}_n, the distance and direction from the origin, and \mathbf{s}, the scattering angle. These go into changing the phase of the scattered ray.

What about the structure factor amplitude?
The structure factor equation...

This also solves the case of n arbitrary electrons located at positions \vec{r}_n:

$$f(s) = \sum_n f_n e^{2\pi i \frac{\vec{r}_n \cdot \vec{s}}{\lambda}}$$

The sum of all diffracted rays along direction \vec{s}.

The structure factor depends on two things for each electron: \vec{r}_n, the distance and direction from the origin, and \vec{s}, the scattering angle. These go into changing the phase of the scattered ray.

What about the structure factor amplitude?

Well... for a free electron, it is constant... that is scattering is equal in intensity at all angles.

$$f \propto \frac{1}{2 \sin \theta}$$

θ: magnitude of scattering vector. What does this axis mean?
Real atoms are more complex. Of course... atoms are more complex. They have clouds of e^- density surrounding the nucleus... and have different numbers of e^- if different types of atoms.

So... scattering from an atom is more complicated in only one way we need to worry about now... that is the scattering intensity is not constant with scattering angle. It depends like this...

Figure 4.11. The scattering factor f for a carbon atom as a function of $2(\sin \theta / \lambda)$. f is expressed as electron number and for the beam with $\theta = 0$, $f = 6$.

Such graphs are available for all atoms in standard tables.
Real atoms are more complex....

Of course... atoms are more complex. They have clouds of \(e^- \) density surrounding the nucleus... and have different numbers of \(e^- \) if different types of atoms.

So... scattering from an atom is more complicated in only one way we need to worry about now... that is the scattering intensity is not constant with scattering angle. It depends like this...

![Graph](image)

Figure 4.11. The scattering factor \(f \) for a carbon atom as a function of \(2(\sin \theta / \lambda) \). \(f \) is expressed as electron number and for the beam with \(\theta = 0, f = 6 \).

Such graphs are available for all atoms in standard tables.

So for atom \(i \):

\[
F_i(s) = f_i e^{2\pi i s \cdot \mathbf{r}_i}
\]

where now \(f_i \) itself depends on the scattering vector \(s \).
The molecular structure factor...

So for atom \(i \):

\[
F_i(s) = f_i e^{2\pi i \cdot \vec{r}_i \cdot \vec{s}}
\]

where now \(f_i \) itself depends on the scattering vector \(\vec{s} \).

What about a more complex molecule of \(N \) atoms?

Well, each atom will scatter as above, and the net result is:

\[
\vec{F}(s) = f_1 e^{2\pi i \vec{r}_1 \cdot \vec{s}} + f_2 e^{2\pi i \vec{r}_2 \cdot \vec{s}} + \ldots + f_N e^{2\pi i \vec{r}_N \cdot \vec{s}}
\]
The molecular structure factor...

So for atom i:

$$F_i(s) = f_i e^{2\pi i \hat{r}_i \cdot \hat{s}}$$

where now f_i itself depends on the scattering vector \hat{s}.

What about a more complex molecule of 3 atoms?

Well, each atom will scatter as above, and the net result is:

$$\vec{F}(s) = \vec{F}_1(s) + \vec{F}_2(s) + \vec{F}_3(s)$$

In an Argand diagram:

$$\vec{F}(s) = \sum_i f_i e^{2\pi i \hat{r}_i \cdot \hat{s}}$$

This is the molecular structure factor.
The molecular structure factor...

\[F(s) = \sum_i f_i e^{+2\pi i \mathbf{r}_i \cdot \mathbf{s}} \]

This is the molecular structure factor.

This is what we have been going for ... the mathematical relationship that gives us the scattering intensity at any direction given the structure of the molecule!

It is mathematically identical to the Fourier Transform.

\[\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \]
and the spatial **Fourier transform**...

\[
\tilde{F}(s) = \sum_i f_i e^{2\pi i \cdot \vec{r}_i \cdot \vec{s}}
\]

This is the *molecular structure factor*

This is what we have been going for ... the *mathematical relationship* that gives us the scattering intensity at any direction given the structure of the molecule!

It is mathematically identical to the Fourier Transform.

...it means that if we can get amplitudes and phase angles for the scattering in all directions, we can mathematically reconstruct the original image by taking the inverse transform!
To see this ... we write the structure factor equation is a slightly different way:

\[F(s) = \sum_{\text{points } j} \rho(j) e^{2\pi i \frac{r_j \cdot s}{l}} \]

\(\rho(j) \) is the electron density at the \(j \)th point in space.

Then the inverse relationship is this:

\[\rho(j) = \sum_{\text{points } k} F_k(s) e^{-2\pi i \frac{r_j \cdot s}{l}} \]

So... if we know the amplitude of scattering at every point in "S space", and if we know each associated phase angle, then we can reconstruct the electron density at every point \(j \) in real space.

Now, what is “S space”? We need some intuition about this...
What is S space?

Well, S is the scattering vector. It has magnitude $\frac{2 \sin \Theta}{\lambda}$ where Θ is the scattering angle. As we vary S, we are varying the angle of scattering.

So...

X-ray \rightarrow F(s_1) \rightarrow F(s_2) \rightarrow F(s_n)

units here are what?
What is S space?

Well, S is the scattering vector. It has magnitude $\frac{2\sin \Theta}{\lambda}$ where Θ is the scattering angle. As we vary S, we are varying the angle of scattering.

So...

So, at the detector low-angle diffraction ends up near the center (the origin) and high-angle diffraction ends up near the periphery.

This correlates with low-resolution features of our object near the center, and high-resolution features of our object near the periphery.

\Rightarrow As the spatial dimension gets smaller, the scattering angle gets bigger.
So now we can understand the diffraction pattern space (or S space, or Fourier space, or reciprocal space).

[real space]
dimensions are distance

[reciprocal space]
dimensions are spatial frequency

\[F(h,k) = \sum_{x,y} p(x,y) e^{2\pi i r(x,y) \cdot (h,k)} \]

Each point in reciprocal space, say \(F(h,k) \), comes from where in real space?
Reciprocal Space

So now we can understand the diffraction pattern space (or S space, or Fourier space, or reciprocal space).

![Diagram showing real space and reciprocal space with equations and explanations]

[real space]
dimensions are distance

[reciprocal space]
dimensions are spatial frequency

\[F(h,k) = \sum_{x,y} p(x,y) e^{2\pi i \hat{r}(x,y) \cdot \hat{s}} \]

same as before!

Each point in reciprocal space, say \(F(h,k) \), comes from where in real space?

Each point in reciprocal space contains the summed contribution from all atoms (all points) in real space.
Reciprocal Space

So now we can understand the diffraction pattern space (or S space, or Fourier space, or reciprocal space)

\[F(h,k) = \sum_{x,y} \rho(x,y) e^{2\pi i r(x,y) \cdot \frac{1}{a}} \]

Each point in reciprocal space, say \(F(h,k) \), comes from where in real space?

Each point in reciprocal space contains the summed contribution from all atoms (all points) in real space.

What do different points in reciprocal space mean then?
Reciprocal Space

So now we can understand the diffraction pattern space (or S space, or Fourier space, or reciprocal space).

In real space:
- Dimensions are distance.

In reciprocal space:
- Dimensions are spatial frequency.

Now...

Each point in real space, say \(r(x,y) \), comes from where in reciprocal space?
So now we can understand the diffraction pattern space (or S space, or Fourier space, or reciprocal space).

![Diagram of real and reciprocal space with coordinate axes labeled x and h, $r(x,y)$ and $F(h,k)$, and a summation formula for the inverse transform: $p(x,y) = \sum_{h,k} F(h,k) e^{-2\pi i r(x,y) \cdot \hat{S}}$ (the inverse transform).]
A Demo....

Two goals of this:

1. understand the relationship of real and reciprocal space
2. what's more important... phase angles or amplitudes?

\[p(x,y) = \sum_{\text{reciprocal space } h,k} F(h,k) e^{-2\pi i \frac{x}{h}\frac{y}{k}} \]

(the inverse transform)
Reciprocal Space
An atom....

Real space

Fourier space
A molecule....

Real space

Fourier space
A duck....

Real space Fourier space
The low scattering angle information from the duck....

Real space Fourier space
A low-resolution duck....

Real space

Fourier space
The high scattering angle information from the duck....
High spatial frequency duck....

Real space

Fourier space
A cat....

Real space

Fourier space
The cat and duck reciprocal spaces.

Fourier space (cat)

Fourier space (duck)
Magnitude from the cat and phases from the duck?

Fourier space (cat)

only magnitudes

Fourier space (duck)

only phases
We get back the duck...

Fourier space (cat)
only magnitudes

Real space

Fourier space (duck)
only phases
Now, mag from duck and phases from cat...

Fourier space (cat)
only phases

Fourier space (duck)
only magnitudes
Now, mag from duck and phases from cat...

Fourier space (cat)
only phases

Real space

Fourier space (duck)
only magnitudes
But magnitudes do have information...

A cat and fourier space magnitudes

A manx cat and fourier space

So what if we get mag from the cat and phases from the manx cat?
So, phases from manx and mags from complete cat....
We get back the tail, sort of....
Now for two big depressing problems...

1. We cannot practically collect the diffraction pattern of a single molecule. Too weak... so how can we solve structures?

2. We do not directly get any phases in protein crystallography. All we get are amplitudes!

\[
F(s) = \sum_{\text{points } j \text{ in space}} p(j) e^{2\pi i \frac{r_j}{s}}
\]

\[
p(c_i) = \sum_{\text{points } k \text{ in } S \text{ space}} F_k(c_i) e^{-2\pi i \frac{r_k}{s}}
\]
Next, we continue our discussion of diffraction theory.

<table>
<thead>
<tr>
<th>Linear</th>
<th>n = 1</th>
<th>n = 2 or 3</th>
<th>n >> 1</th>
<th>continuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>exponential growth and decay</td>
<td>second order reaction kinetics</td>
<td>electrical circuits</td>
<td>Diffusion</td>
</tr>
<tr>
<td>Linear</td>
<td>single step conformational change</td>
<td>linear harmonic oscillators</td>
<td>molecular dynamics</td>
<td>Wave propagation</td>
</tr>
<tr>
<td>Linear</td>
<td>fluorescence emission</td>
<td>simple feedback control</td>
<td>systems of coupled harmonic oscillators</td>
<td>quantum mechanics</td>
</tr>
<tr>
<td>Linear</td>
<td>pseudo first order kinetics</td>
<td>sequences of conformational change</td>
<td>equilibrium thermodynamics</td>
<td>viscoelastic systems</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>fixed points</td>
<td>anharmonic oscillators</td>
<td>systems of non-linear oscillators</td>
<td>Nonlinear wave propagation</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>bifurcations, multistability</td>
<td>relaxation oscillations</td>
<td>non-equilibrium thermodynamics</td>
<td>Reaction-diffusion in dissipative systems</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>irreversible hysteresis</td>
<td>predator-prey models</td>
<td>protein structure/function</td>
<td>Turbulent/chaotic flows</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>overdamped oscillators</td>
<td>van der Pol systems</td>
<td>neural networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaotic systems</td>
<td>the cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ecosystems</td>
<td></td>
</tr>
</tbody>
</table>

adapted from S. Strogatz