
Spontaneous movement of particles due to thermal 
agitation 

 

Lecture 4: Diffusion:  The Macroscopic and Microscopic 
Theories 

R. Ranganathan 
Green Center for Systems Biology, ND11.120E

Robert Brown 
1827 

 

Adolf Fick 
1855 

 

Albert Einstein 
1905 

 



Linear systems at the thermodynamic limit…. 

 

Linear 

 

Nonlinear 

 

n = 1 

 

n = 2 or 3 

 

n >> 1 

 

continuum 

 exponential growth 
and decay 

single step 
conformational 
change 

fluorescence 
emission 

pseudo first order 
kinetics 

 fixed points 

bifurcations, multi 
stability 

irreversible 
hysteresis 

overdamped 
oscillators 

 

second order 
reaction kinetics 

linear harmonic 
oscillators 

simple feedback 
control 

sequences of 
conformational 
change 

 

anharmomic 
oscillators 

relaxation 
oscillations 

predator-prey 
models 

van der Pol 
systems 

Chaotic systems 

 

electrical circuits 

molecular dynamics 

systems of coupled 
harmonic oscillators 

equilibrium 
thermodynamics 

diffraction, Fourier 
transforms 

 

systems of non-
linear oscillators 

non-equilibrium 
thermodynamics 

protein structure/
function 

neural networks 

the cell 

ecosystems 

Diffusion 

Wave propagation 

quantum 
mechanics 

viscoelastic 
systems 

 Nonlinear wave 
propagation 

Reaction-diffusion 
in dissipative 
systems 

Turbulent/chaotic 
flows 

 

adapted from S. Strogatz



First, the macroscopic view... 

The observations: 
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The observations: 

 

 



First, the macroscopic view... 

The physical model: 

 

 



First, the macroscopic view... 

The physical model: 

 

 



But the, along came Einstein in 1905.... 

The physical model: 

 

 



But the, along came Einstein in 1905.... 

The physical model: 

 

 

How does this explain the phenomenological properties of diffusion? 

 



Does the (unbiased) random walk account for all these properties?  Let’s look in 1-D.... 

 

What are the consequences? 
 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

First what is the position of each particle    after     steps of the walk?  Well.... 

 

i n

1.  The average displacement of particles.... 

 
Each step takes    seconds, distance 

moved is 
 

τ
δ

A “stochastic iterative map”....we will come 
back to this. 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

First what is the position of each particle    after     steps of the walk?  Well.... 

 

i n

1.  The average displacement of particles.... 

 
Each step takes    seconds, distance 

moved is 
 

τ
δ

Thus, the particles go nowhere on 
average 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

First what is the squared position of each particle    after     steps?  Well.... 

 

i n

2.  How much do the particles spread out over time?   

 

〈xi
2 (n)〉

Each step takes    seconds, distance 
moved is 

 

τ
δ



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

First what is the squared position of each particle    after     steps?  Well.... 

Now, let’s take the average... 

i n

2.  How much do the particles spread out over time?   

 

〈xi
2 (n)〉

Each step takes    seconds, distance 
moved is 

 

τ
δ



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

How much do particles spread out over time?   

 

〈xi
2 (n)〉

Each step takes    seconds, distance 
moved is 
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H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

How much do particles spread out over time?   

 

〈xi
2 (n)〉

We can simplify.... 
 

Each step takes    seconds, distance 
moved is 

 

τ
δ



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

How much do particles spread out over time?   

 

〈xi
2 (n)〉

We need to change n into time.... 
 

Each step takes    seconds, distance 
moved is 

 

τ
δ

But...we want the RMS displacement, 
so.... 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

We want the RMS displacement:   
 

How much do particles spread out over time?   

 

〈xi
2 (n)〉

We need to change n into time.... 
 

Each step takes    seconds, distance 
moved is 

 

τ
δ

Thus, the particles spread out as the 
square root of time... 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

3.  What about the shape of the distribution of particles?   

 

Think about coin tossing.... 
 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

What about the shape of the distribution of particles?   

 

This is the binomial density function 
again,…. 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

What about the shape of the distribution of particles?   

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

What about the shape of the distribution of particles?   

 

But if the number of trials is very large 
and p is not too small..... 

 



H.C. Berg.  “Random Walks in Biology”, (1993) Princeton Press

What about the shape of the distribution of particles?   

 

But if the number of trials is very large and p is not too small.....the 
binomial distribution approaches the Gaussian distribution.  The 
bell shaped curve! 

 



So the random walk does indeed account for the motion of particles... 

 

A seminal example of how simple physical theory (the 
random walk) can explain the rather complex behavior 
of particles moving under thermal agitation... 

 



So the random walk does indeed account for the motion of particles... 

 

But, what happened to good old Fick’s Law, which does 
indeed also account for the properties of diffusion?  
Well, it works and it still works with this new 
understanding.... 

 



The relationship of the random walk (the microscopic view) to Fick’s first law (the 
macroscopic view). 

 

Now, how do we write the flux of particles going from     to 
                ? 
 
x +δ x

x



The relationship of the random walk (the microscopic view) to Fick’s first law (the 
macroscopic view). 

 



The relationship of the random walk (the microscopic view) to Fick’s first law (the 
macroscopic view). 

 



The relationship of the random walk (the microscopic view) to Fick’s first law (the 
macroscopic view). 

 



The physical model: 

 

 

So, Fick’s mapping of diffusion to Fourier’s or Ampere’s 
Laws of heat conduction and current flow is correct.   

But what kind of force is a concentration gradient? 
 



Now....the thermodynamic basis for diffusion. 

 

To understand this, we begin with some definitions 
and some review of thermodynamics.... 

 



Now....the thermodynamic basis for diffusion. 

 



Now....the thermodynamic basis for diffusion. 

 

where the gradient operator is defined as.... 

 



Now....the thermodynamic basis for diffusion. 

 



Now....some basic laws of thermodynamics. 

 

free energy is a function of a number of so-called 
“natural variables”... 

 



Now....some basic laws of thermodynamics. 

 

and the derivative of free energy involves taking 
partial derivatives of the function G with respect 
to these natural variables... 

so what are there partial derivatives?  They have key 
physical interpretations... 

 



Now....some basic laws of thermodynamics. 

 

And so we get the basic definition of 
infinitesimal changes in Gibbs free 
energy....the basic equation of 
equilibrium thermodynamics. 

 



Ok, with this, let’s go back to our problem of diffusion.... 
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Ok, with this, let’s go back to our problem of diffusion.... 

 



Ok, with this, let’s go back to our problem of diffusion.... 

 

....and one more step get’s us to back to Fick’s law.... 

 



Ok, with this, let’s go back to our problem of diffusion.... 

 

One important point here.... 

 



Ok, with this, let’s go back to our problem of diffusion.... 

 



Ok, with this, let’s go back to our problem of diffusion.... 

 



Fick’s Second Law....The Diffusion Equation 

 



To understand this, we return to our 1D diffusion 
problem.... 

 

Fick’s Second Law....The Diffusion Equation 

 



Fick’s Second Law....The Diffusion Equation 

 



Fick’s Second Law....The Diffusion Equation 

 



Taking the limits as both tau and delta approach 
zero... 

Fick’s Second Law....The Diffusion Equation 
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Fick’s Second Law....The Diffusion Equation 

 



Fick’s Second Law....The Diffusion Equation 

 



Fick’s Second Law....The Diffusion Equation 

 



One can solve higher dimensional versions of the diffusion equation...in general 
many complex phenomena can be explained by solutions to this equation. 

 

Fick’s Second Law....The Diffusion Equation 

 



Next time…the theory of diffraction 
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