Lecture 3: Statistical Basis for Macroscopic Phenomena

Winter 2017

R. Ranganathan

Green Center for Systems Biology, ND11.120E

Probability, the three central distributions, and qualitative behavior of dynamical systems. The power of sketching global behaviors

Pierre-Simon LaPlace 1749-1827

Carl Friederich Gauss
1777-1855

Simeon Denis Poisson 1781-1840

So, today we do two things: consider the statistics of systems of various size, and we learn to think qualitatively about behaviors of linear dynamical systems.

So, today we do two things: consider the statistics of linear systems of various
size, and we consider a few examples of such dynamical systems.

The goals will be two-fold:
(1) Review the essentials probability theory....what are probabilities, ways of counting, the three central distributions of primary importance....the binomial, Poisson, and Gaussian.
(2) See how probability theory provides a powerful basis for predicting the behavior of simple systems. And, reinforces the importance of fluctuations in driving reactions.

Probability theory....starting with the basics.
(1) The Samplo Spaw: The artitring "space" of oll porsict onteances of un experimest

Like ... preterny doons A, R, \ldots.
folded sttes A, B, al C of protern.

Probability theory....starting with the basics.
(1) The Sample Space: The artitring "Space" of "ll porsich ruteavies of un experiment

Like \cdots preterny doors A, R, ∞. *...
folded stets A, B, al C of protein.

Now... a uniform sample space s owe where the likelihood of each outcome is the same
a non-uniform spence is ore where the likelituads of outcomes could br different

Probability theory....starting with the basics.
 of an experiment

Like \cdots preterny doors A, R, ∞. on ...
folded sties A, B, at \subset of protein.

Definition of probabifty:
The probability of an "event" is the sum of all the probabilities of outcomes fawortb to the event.

Probability theory....starting with the basics.

Probability theory....starting with the basics.

Basic herorews:

1) $P_{A}=\frac{N_{A}}{N}$; $N_{A}=$ no. youtcounes in A $N E$ EVil out romes.
2) $P_{B}=\frac{N_{B}}{N}$
3) $P(A B)=\frac{N_{A B}}{N} \quad[$ probab.litif $\mid A$ and B happening trogolver].
(Note: (1) this is the intorsecikeny onteanes A and B).
the concept of joint probability...

Probability theory....starting with the basics.

3) $P(A B)=\frac{N_{A B}}{N} \quad \begin{gathered}\text { probscilify } \\ \text { happening together] } A \text { and } B\end{gathered}$

...and then the conditional probability...
4)

$$
\begin{aligned}
P(B \mid A) & =\frac{N_{A B}}{N_{A}} \quad[\text { probccici, } \upharpoonleft B \text { happening given } A \text { has } \\
& =P(A B) \cdot \frac{1}{P_{A}}
\end{aligned}
$$

Probability theory....starting with the basics.

Basic heaorewe:

4)

$$
\begin{aligned}
P(B \mid A) & =\frac{N_{A B}}{N_{A}} \quad[\text { probcol.c, } \notin B \text { happening given } A \text { has } \\
& =P(A B) \cdot \frac{1}{P_{A}}
\end{aligned}
$$

This leads to the general definition of statistical independence...

$$
P(A B)=P(A) P(B \mid A)
$$

Probability theory....starting with the basics.

Baric heroneme:

4)

$$
\begin{aligned}
P(B \mid A) & =\frac{N_{A B}}{N_{A}} \quad[\text { probcol.c } \notin B \text { happening given } A \text { has } \\
& =P(A B) \cdot \frac{1}{P_{A}}
\end{aligned}
$$

This leads to the general definition of statistical independence...

$$
P(A B)=P(A) P(B \mid A)
$$

If A and B independent ... then $P(B \mid A)=P(\Omega)$ and... $P(A B)=P(A) P(B) \quad \Rightarrow$ statistical independence

Probability theory....starting with the basics.

Basic heravewe:

4)

$$
\begin{aligned}
P(B \mid A) & =\frac{N_{A B}}{N_{A}} \quad[\text { probcol.c } \notin B \text { happening given } A \text { has } \\
& =P(A B) \cdot \frac{1}{P_{A}}
\end{aligned}
$$

This leads to the general definition of statistical independence...

$$
P(A B)=P(A) P(B \mid A)
$$

If A and B independent ... then $P(B \mid A)=P(E)$ and... $P(A B)=P(A) P(B) \quad \Rightarrow$ statistive independence Also...

$$
P(A B)=P(B) P(A \mid B) \text {.thus... }
$$

Probability theory....starting with the basics.

Basic heravewe:

4)

$$
\begin{aligned}
& P(B \mid A)=\frac{N_{A B}}{N_{A}} \quad[\text { probcilc, } \notin B \text { happening given } A \text { has } \\
&\text { happened }] .
\end{aligned}
$$

This leads to the general definition of statistical independence...

$$
P(A B)=P(A) P(B \mid A)
$$

If A and B independent ... then $P(B \mid A)=P(E)$ and... $P(A B)=P(A) P(B) \quad \Rightarrow$ statistical independence Also...

$$
\begin{aligned}
& P(A B)=P(B) P(A \mid B) \quad \text { thus... } \\
& P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)} \quad \text { Bayes' theorem. }
\end{aligned}
$$

Probability theory....starting with the basics.

Basic Neadewt:

1) $P_{A}=\frac{N_{A}}{N}$; $N_{A}=$ no. y outcomes in A $N \equiv$ Vial out eaves.
2) $P_{B}=\frac{N_{B}}{N}$

$$
P(A B)=P(A) P(B \mid A)
$$

...and finally the combined probability...
5) $P(A+B)=P_{A}+P_{B}-P(A B) \quad$ (prob.sity of A or B or if A and B are mutually exclusive, A

Counting statistics...permutations and combinations

Say we have n things in a now. How many ways ane there of avenging them?

$\cdots \cdots$	\cdots	123	13	2	
$\cdots \cdots$	\cdots	213	231		
\cdots	\cdots	\cdots		\cdots	321

This is called the number of permutations of n things n at a time and is given y...

$$
\begin{aligned}
P(n, n) & =n! \\
& =n(n-1)(n-2) \ldots(2)(1)
\end{aligned}
$$

Counting statistics...permutations and combinations

Say we have n things in a now. How many ways ane there of avenging them?

$\cdots \cdots$	\cdots	123	13	2	
\cdots	\cdots	\cdots	231		
\cdots	\cdots	\cdots		\cdots	3

Bot we can also usk for the number of permutations of n things talas r at a time:

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)
$$

We can simplify this....

Counting statistics...permutations and combinations

But we can also ask for the number of permutations of n things
Tales r at a time:

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)
$$

Multiply and divide G (n-r)!

$$
\begin{aligned}
P(n, r) & =n(n-1)(n-2) \cdots(n-r+1)\left[\frac{(n-r)!}{(n-r)!}\right] \\
& =\frac{n(n-1)(n-2) \cdots(n-r+1)(n-r)(n-r-1) \ldots(2)(1)}{(n-r)!} \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

This is the number of ways of taking \mathbf{n} things \mathbf{r} at a time....

Counting statistics...permutations and combinations

For example, if we have a tetrameric channel, we can ask how many ways are there of taking two subunits at a time....

For example, if we have a tetrameric channel, we can ask how many ways are there of taking two subunits at a time....

This is the number of permutations...

Counting statistics...permutations and combinations

But if we don't care about the order of taking pairs, then this is called the number of combinations of \mathbf{n} things taken \mathbf{r} at a time...

$$
C(n, r)=\frac{n!}{(n-v)!r!} \cdot\binom{n}{r} \quad \text { This is the number of combinations... }
$$

Counting statistics...permutations and combinations

But if we don't care about the order of taking pairs, then this is called the number of combinations of \mathbf{n} things taken \mathbf{r} at a time...

This is the number of combinations...

So for the tetrameric channel.... 12 permutations but only 6 combinations

Counting statistics...permutations and combinations

So ...
permutitions are the number of weys of amoingn thmys in a delinita ader

Combinalias ere the nowber of conys of arranging thinys wheort caring about the order.

This gets us to the binomial distribution...

What is the probes.ty of getting 3 hoo in 4 trials?
welt . .

$$
\begin{aligned}
& =C(4,3) \cdot P_{\text {mead }}^{4} \\
& =\binom{4}{3} P_{\text {had }}^{4}
\end{aligned}
$$

And in general, for getting \mathbf{r} heads in \mathbf{n} tries....

This gets us to the binomial distribution...

What is the probe6.ty of getting 3 hade in 4 trials?
welt . .

$$
\begin{aligned}
& =C(4,3) \cdot P_{\text {mead }}^{4} \\
& =\binom{4}{3} P_{\text {hel }}^{4}
\end{aligned}
$$

And in general, for getting \mathbf{r} heads in \mathbf{n} tries....

$$
P(r \text { heads in in trams })=\binom{n}{r}(0.5)^{n}
$$

This gets us to the binomial distribution...

What is the probe6.ty of getting 3 hoo in 4 trials?
welt . .

$$
\begin{aligned}
& =C(4,3) \cdot P_{\text {mead }}^{4} \\
& =\binom{4}{3} P_{\text {med }}^{4}
\end{aligned}
$$

And in general, for getting \mathbf{r} heads in \mathbf{n} tries....

$$
P(r \text { heads in in trans })=\binom{n}{r}(0.5)^{n}
$$

But, what if p (head) is not same as p (tail)?

This gets us to the binomial distribution...

$$
\begin{aligned}
& P(r \text { events in } n \text { that })=\binom{n}{r} p_{\text {eat }}^{r}\left(p_{\text {not event }}^{n-r}\right) \\
& =(n) p_{e n+1}^{n}\left(1-p_{e_{n+t}}^{n}\right)^{n-r}
\end{aligned}
$$

This is the binomial probability density function....

This gets us to the binomial distribution...

$$
\begin{aligned}
& P(r \text { events in } n \text { that })=\binom{n}{r} p_{\text {vat }}^{r}\left(p_{\text {not event }}^{n-r}\right) \\
& =(n) p_{e n+1}^{n}\left(1-p_{e n t}^{n}\right)^{n-r}
\end{aligned}
$$

This is the binomial probability density function....
It gives us the probability of getting \mathbf{r} events out of \mathbf{n} trials given a fixed probability of the event with each trial.

This gets us to the binomial distribution...

$$
\begin{aligned}
& P(r \text { events in } n \text { that })=\binom{n}{r} p_{\text {vat }}^{r}\left(p_{\text {not event }}^{n-r}\right) \\
& =\binom{n}{p} p_{0 \times n t}^{n}\left(1-p_{e_{n+1}}^{n-1}\right.
\end{aligned}
$$

This is the binomial probability density function....
It gives us the probability of getting r events out of \mathbf{n} trials given a fixed probability of the event with each trial.

In general, it is used in cases where the total number of trials is not large, and the probability of the event is relatively high
$P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k} 8^{n-k}$
So...the probability of getting \mathbf{k} events out of \mathbf{n} trials given a mean probability of events of \mathbf{p}

General shape of the binomial distribution...

So...the probability of getting \mathbf{k} events out of \mathbf{n} trials given a mean probability of events of \mathbf{p}

Say peo.s. Ont \& 10 trials whatithe proses.ty of getting
1 success 2? 3? ... 10?

Quite reasonably, the most likely outcome is the case of $k=5$. In general...the mean is $\mathbf{n p}$.

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Now what happens if \mathbf{n} approaches infinity and \mathbf{p} is small?

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} f^{k}(1-p)^{n-k}
$$

Non the the Runt as $n \rightarrow \infty$, and noting Nat $p=\frac{\lambda^{2}}{n}$ eves.

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} P(k ; n, p)=\lim _{n \rightarrow \infty}\left[\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}\right] \\
=\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left[\frac{\frac{n!}{(n+k)!}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\right]
\end{array}
$$

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Nos the the Resit as $n \rightarrow \infty$, and noting Ant $p=\frac{\lambda^{2}}{n}$ man.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P(k ; n, p)=\lim _{n \rightarrow \infty}\left[\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}\right] \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left[\frac{\frac{n!}{(n+k)!}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\right] \\
& \text { Now } \ldots \frac{n!}{(n-k)!} \\
& \text { (1) } \frac{n \cdot(n-1)(n-2) \ldots(n-(k-1))}{n^{k}} \approx \frac{n^{k}}{n \rightarrow \infty} n^{n}=1
\end{aligned}
$$

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
\begin{aligned}
& \text { (1) } \frac{\frac{n!}{n-6)!}}{n^{k}}=\frac{n \cdot(n-1)(n k-2) \cdots(n-(k-1))}{n^{k}} \approx \underbrace{n^{k}}_{n \rightarrow \infty}=1 \\
& \frac{n!}{(n-k)!}=\frac{n^{k}}{(n(n-1)(n-2) \cdots(n)(n-k)(n+(k-1) \cdots(1)} \\
&=\underbrace{n(n-1)(n-2) \cdots(n-1)) \cdots(1)} \\
& \lim _{n \rightarrow \infty}(n \cdot k+1)
\end{aligned}
$$

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Non the the Quoit as $n \rightarrow \infty$, and noting Ant $p=\frac{\lambda^{2}}{n}$ eves.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P(k ; n, p)=\lim _{n \rightarrow \infty}\left[\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}\right] \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left[\frac{\frac{n!}{(n+k)!}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\right] \\
& \text { Now .. } \frac{n!}{(n-k)!} \\
& \text { (1) } \frac{n \cdot(n-1)(n k 2) \ldots(n-(k-1))}{n^{k}} \underset{n \rightarrow \infty}{\approx \frac{n^{k}}{n^{k}}=1}
\end{aligned}
$$

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Non the the Runt as $n \rightarrow \infty$, and noting Nat $p=\frac{\lambda^{2}}{n}$ evert.

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} P(k ; n, p)=\lim _{n \rightarrow \infty}\left[\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}\right] \\
=\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left[\frac{\frac{n!}{(n+k)!}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\right]
\end{array}
$$

Now ... $\frac{n!}{(n-6)!} n^{k}=\frac{n \cdot(n-1) \cdot(n-2) \ldots(n-(k-1))}{n^{k}} \approx \frac{n^{k}}{n^{k}}=1$
(2) $\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}$
(3) $\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-k}=1$

Putting it all together....

There are two interesting limits to the Binomial distribution....first the Poisson distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Non the the Quoit as $n \rightarrow \infty$, and noting Ant $p=\frac{\lambda^{2}}{n}$ eves.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P(k ; n, p)=\lim _{n \rightarrow \infty}\left[\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}\right] \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}\left[\frac{\frac{n!}{(n+k)!}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\right]
\end{aligned}
$$

So. .

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p(k, n, p)=\frac{\lambda^{k}}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1 \\
& P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow \text { the passion devest, function }
\end{aligned}
$$

The nearly universal importance of the Poisson distribution

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow \text { the passion density, fraction }
$$

The nearly universal importance of the Poisson distribution...example 1

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow \text { the possion demsit fouction }
$$

Single-step molecular conformational change. An example of a first order process...

Consider its microscopic characteristics....

The nearly universal importance of the Poisson distribution...example 1

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow \text { the prosim dmenty frowition }
$$

Single-step molecular conformational change. An example of a first order process...
(1) the number of trials is large (and not directly observed)
(2) the probability of barrier crossing is even unknown....all we know is the mean number of events per time (the rate constant).

The nearly universal importance of the Poisson distribution...example 1
$P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow$ the passion density, function.

Single-step molecular conformational change. An example of a first order process...

So...

$$
P(k \text { cossum) }, \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

The nearly universal importance of the Poisson distribution...example 1
$P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \rightarrow$ the passion devest, function

Single-step molecular conformational change. An example of a first order process...

So...

$$
P(k \text { possum } s, \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

This is the mex rosecpic (shelhastic) view of nearly all reactions?
The key assaptions...
(1) events are statistrilly independent
(2) evert, are rave relative to number of trials.

$$
A \xrightarrow{k} A^{*}
$$

The deterministic solution....

$$
\frac{d A}{d t}=-k A
$$

with initial conditions and specified range...
$A(0)=A_{0}$
$0 \leq \tau \leq t$

Two solutions to the first order process!

$$
A \xrightarrow{k} A^{*}
$$

The deterministic solution....

$$
\frac{d A}{d t}=-k A
$$

with initial conditions and specified range...

$$
A(0)=A_{0} \quad ; \quad 0 \leq \tau \leq t
$$

$$
A=A_{0} e^{-k t}
$$

Two solutions to the first order process!

$$
A \xrightarrow{k} A^{*}
$$

The deterministic solution....

$$
\frac{d A}{d t}=-k A
$$

$$
A=A_{0} e^{-k t}
$$

with initial conditions and specified range...

$$
A(0)=A_{0} \quad ; \quad 0 \leq \tau \leq t
$$

The stochastic solution....

$$
\begin{aligned}
& P(n \text { events, } k, t)=\frac{(k t)^{n} e^{-k t}}{n!} \rightarrow \underset{\substack{\text { mean mo. pervert int } \\
\text { bet }}}{P(0, k, t)} \begin{aligned}
& 0! \frac{(k t)^{0} e^{-k t}}{0!} \\
&=e^{-k t} \\
& \text { Bot whet is } P(0) ?
\end{aligned}
\end{aligned}
$$

Two solutions to the first order process!

$$
A \xrightarrow{k} A^{*}
$$

The deterministic solution....

The stochastic solution....

with initial conditions and specified range...
$A(0)=A_{0}$
$0 \leq \tau \leq t$

Example 2: Ion channel gating

Consider:

The stochastic opening and closing of single ion channels....

Example 2: lon channel gating

With single channel recording...

Example 2: lon channel gating

Example 2: lon channel gating

Consider:

The prowectere gthe Posean prown thlle as thit the histyomm of open trims shuad be expereithally datibutide with uclowecteniste tom of $1 / k_{1} \ldots$

Example 2: Ion channel gating

Example 2: lon channel gating

Another example of our process of modeling....

Example 2: lon channel gating

Consider:

(1) what . f :

Example 2: Ion channel gating

Consider:

(1) what . f :

How sill than $O_{1} \rightarrow C$ transition dual time lab?

Example 2: lon channel gating
(1) what if:

Consider:

How sill the $0, \rightarrow C$ tansition dunell tive loob?

theo will the $O_{1} \rightarrow \mathrm{C}_{2}$ tronsitu to duell tiwe loole?

Example 2: lon channel gating
(1) what if:

Consider:

How will the O_{1} duel times overall look?

Why?

Example 2: lon channel gating
(1) what .f:

$$
\begin{aligned}
& c \stackrel{k_{-1}}{\longleftrightarrow} 0_{1} \xrightarrow{k_{2}} O_{2} \\
& \frac{d o_{1}}{d t}=-k_{-1} o_{1}-k_{2} o_{1} \\
&=-\left(k_{-1}+k_{8}\right) o_{1} \\
&= \\
& 0_{1}(t)=o_{0}(t) e^{-\left(k_{-1}+k_{4}\right) t}
\end{aligned}
$$

So, the sum of many Poisson processes is itself a Poisson process with a mean rate equal to the sum of rates

The GFP chromophore

The Jabolinski diagram....

Fluorescence emission comes out of the thermally equilibrated "singlet" state. The relaxation of molecules is a Poisson process. Thus....

$$
N=N_{0} e^{-t / \tau} \quad \text { where } \quad \tau=1 / \alpha
$$

And fluorescence resonance energy transfer (FRET)....

What is the effect of FRET for the fluorescence lifetime of the donor?

And fluorescence resonance energy transfer (FRET)....

(donor)
(acceptor)

Donor emission is still a single exponential but with a faster rate (shorter lifetime) due to FRET...

The other interesting limit of the Binomial distribution....first the Gaussian distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Say $p=0.5$. Out if 10 trials whitithe prob6.6.t of getting 1 menes success ? 2? 3 ? \ldots 10?

The binomial density function for $p=0.5$ and $n=10$. Now what happens if n approaches infinity but \mathbf{p} is NOT small?

The other interesting limit of the Binomial distribution....first the Gaussian distribution

$$
P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Then the binomial distribution is well approximated by the Gaussian (or normal) distribution....the bell-shaped curve

$$
P(k)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}
$$

What's so special about the Gaussian distribution?
what types of procenes genencle Gavasion distributiry?

The centrol ('rmit theareme

What's so special about the Gaussian distribution?
Consider a randan variable z_{i} drawn fum some arbitrary distribution of numbers. No constraint is placed on the native of the distribution from which z_{i} comes fou, but we will insist that each draw of z_{i} be statsishall independent of other draws.

What's so special about the Gaussian distribution?

Consider a randan variable z_{i} drawn from some arbitrary distribution of numbers. No constraint is placed an the native of the distribution from which z_{i} comes form, but we will insist that each draw of z_{i} be statsishally independent of other draws.

Now consider a partial sum of k independent draws of z_{i} :

$$
x_{k}=\sum_{i=1}^{k} z_{i}
$$

Now the mean of variance of x_{k} will keep going up oo $k \rightarrow \infty$, so we will just normalize x_{k} :

$$
y_{k}=\frac{x_{k}-\operatorname{mean}\left(x_{k}\right)}{\sigma_{x_{k}}}
$$

What's so special about the Gaussian distribution?

\%1000 vars from the uniform dist.
j1=rand(1,1000);
[yhist, xhist]=hist(j1,20); figure(101);bar(xhist, yhist) xlabel('value', 'FontSize', 14) ;ylabel('number','FontSize', 14)

What's so special about the Gaussian distribution?

[^0]

What's so special about the Gaussian distribution?

\%1000 vars from the uniform dist.
$j 1=$ rand (1,1000);
[yhist, xhist]=hist (j1, 20) ; figure (101);bar(xhist, yhist) xlabel('value','FontSize', 14) ;ylabel('number','FontSize',14)


```
*now a }1000\mathrm{ trials of partial summations from uniform dist.
for i=1:2000;Z(i)=sum(rand(1,1000)); end
brand=(Z-mean(Z))./var(Z);
[yhist,xhist]=hist(brand, 20);figure(100);bar(xhist,yhist)
[fit1]=fit(xhist',yhist','gauss1');
[model1]=gauss1_fittrace(fit1,[-.4:.01:.4]);
figure(100); hold on;plot(model1(:,1),model1(:,2),'-r','LinelWidth',2); hold off
*
```

What's so special about the Gaussian distribution?

\%1000 vars from the uniform dist.
$j 1=$ rand (1,1000);
[yhist, xhist]=hist(j1,20); figure(101);bar(xhist, yhist) xlabel('value', 'FontSize', 14) ;ylabel('number','FontSize', 14)

```
*
```

```
*now a }1000\mathrm{ trials of partial summations from uniform dist.
for i=1:2000;Z(i)=sum(rand(1,1000)); end
brand=(Z-mean(Z))./var(Z);
[yhist,xhist]=hist(brand,20);figure(100);bar(xhist,yhist)
[fit1]=fit(xhist',yhist','gauss1');
[model1]=gauss1_fittrace(fit1,[-.4:.01:.4]);
figure(100);hold on;plot(model1(:,1),model1(:,2),'-r','Linelidth', 2);hold off
$%
```


What's so special about the Gaussian distribution?

$\% 1000$ vars from the exp dist.
j1=exprnd(1,[[1 1000]);
[yhist, xhist]=hist(j1, 20); figure(101);bar(xhist, yhist)

What's so special about the Gaussian distribution?

\%1000 vars from the exp dist.
j1=exprnd(1,[[1 1000]);
[yhist, xhist]=hist(j1, 20); figure(101);bar(xhist, yhist)

\%now a 1000 trials of partial summation from the exp dist.
for $i=1: 2000 ; Z(i)=\operatorname{sun}(\operatorname{exprnd}(1,[11000])$) end
brand=(Z-mean(Z))./var(Z);
[yhist, xhist]=hist(brand, 20) ; figure(100); bar(xhist, yhist)
[fit1]=fit(xhist', yhist', 'gauss1');
[model1]=gauss1_fittrace(fit1, [-.1:.01:.1]);
figure(100); hold on;plot(model1(:,1), model1(: 2$),{ }^{\prime}-r^{\prime}$, 'Linewidth', 2); hold off

What's so special about the Gaussian distribution?

$$
y_{k}=\frac{x_{k}-\operatorname{mean}\left(x_{k}\right)}{\sigma_{x_{k}}}
$$

we ill not prove it lee, bat it thorns out that if we make many observation of y_{k}, the distribution of y_{k} as $k \rightarrow \infty$ converges to a Gaussian. Thin is the cental limit theorem. It is the reason why models of $*^{\text {many }}$ random phenomena apply this dutribution, and why we call this the "ewer distribution".

What's so special about the Gaussian distribution?

$$
y_{k}=\frac{x_{k}-\operatorname{mean}\left(x_{k}\right)}{\sigma_{x_{k}}}
$$

we ill not prove it lure, bat it thorns out that if we make many observation of y_{k}, the dishibution of y_{k} as $k \rightarrow \infty$ converges to a Gaussian. Thin is the cental limit theorem. It is the reason why models of **any random phenomena apply this dutribution, and why we call this the "ewer distribution".
the fundameatel (and only) constraint that went into the generation of the Gaussian distribution was statistical indaperdewce of the variables being additively combined.... each draw was inclupendent of previn draws.

Next time...an analysis of $\mathbf{n} \gg 1$ linear systems...diffusion and the thermodynamic limit

[^0]: \%1000 vars from the uniform dist.
 $j 1=$ rand (1,1000);
 [yhist, xhist]=hist(j1,20); figure(101);bar(xhist, yhist) xlabel('value','FontSize', 14) ;ylabel('number','FontSize',14)

