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A portion of core metabolism… 

 



Carbo, Adria, et al. "Computational modeling of heterogeneity and function of 
CD4+ T cells." Frontiers in cell and developmental biology 2 (2014).

“…the most recent systems biology markup language (SBML)-compliant network…provides a 
structured understanding on different pathways involved in CD3+ T cell differentiation….” 

Does this lead to understanding? 



Some have tried to apply the strict principles 
of reduction-based science….to write 
down detailed models for each and 
every reaction. 

Does this lead to understanding? 

Karr et al. (2012)  Cell, 150, 389-401 



An important and topical goal is to define the (yet unknown) general laws underlying the 
behavior and evolutionary origin of complex systems in biology 
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gas law and macroscopic properties of this system 
that can be understood from properties of its 
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Also as we will see later on, even a ridiculously simple 
looking reaction with very few parts can exhibit 
extraordinary complexity… 

 

So having many parts is neither necessary not 
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of parts and can yet make clear prediction of how 
such systems behave...satellite control systems, 
cruise controls of cars, air handling systems, an 
airplane, this laptop... 
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(1) ....consisting of many parts, e.g. a complex piece of machinery... 

(2) ...consisting of many interconnected or interwoven parts.... 

 

And what about condensed phases like liquid water or 
ice?  An extensive hydrogen bonding network…. 
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(1) ....consisting of many parts, e.g. a complex piece of machinery... 

(2) ...consisting of many interconnected or interwoven parts.... 

 

We also have theories for condensed phases of matter such 
as liquids, solids, and even disordered states such as 
spin-glasses….and these theories yield general 
predictive properties of highly interconnected 
systems…. 

 
Li et al., Nature (2012) 483, 336-40 
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(1) ....consisting of many parts, e.g. a complex piece of machinery... 

(2) ...consisting of many interconnected or interwoven parts.... 

 

We also have theories for condensed phases of matter such 
as liquids, solids, and even disordered states such as 
spin-glasses....and scientists are discovering new 
biological principles through applying such theories. 

The essence of this simplicity is homogeneity in the pattern 
of interactions....can take averages. 

 
Li et al., Nature (2012) 483, 336-40 



From Merriam-Webster... 

 

(1) ....consisting of many parts, e.g. a complex piece of machinery... 

(2) ...consisting of many interconnected or interwoven parts.... 

(3) ...consisting of parts interconnected so as to make the whole perplexing... 

 

So...what is the essence of it?   

 



Well....complex systems show 

         heterogeneity of system components such that some parts and connections 
are much more important than others (can’t take averages!), and.... 

          non-linearity, such that the combined activity of components cannot be 
predicted from properties of the components taken individually.  Non-
independence of parts and reactions.   The whole is NOT a sum of the 
parts!! 

 



Well....complex systems show 

         heterogeneity of system components such that some parts and connections 
are much more important than others (can’t take averages!), and.... 

          non-linearity, such that the combined activity of components cannot be 
predicted from properties of the components taken individually.  Non-
independence of parts and reactions.   The whole is NOT a sum of the 
parts!! 

 

2/13 Small non-linear systems…the MAP kinase switch 
2/15 Mesoscale non-linear systems…the problem of cellular signaling 
2/20 Large non-linear systems…the problem of proteins 
2/22 Epistasis…genetic and evolutionary principles, fitness landscapes 



Well....complex systems show 

         heterogeneity of system components such that some parts and connections 
are much more important than others (can’t take averages!), and.... 

          non-linearity, such that the combined activity of components cannot be 
predicted from properties of the components taken individually.  Non-
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And, of course….the complexity scales steeply with 
the number of variables in a system that are 
engaged non-linearly. 
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So…how do we proceed in (quantitatively) understanding systems in all these 
different regimes? 

 

“size” of system?  
That is, number of 
variables… 
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exps, collect data 
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(need intuition, high-quality work, 
and some imagination) 

 

(linear or non-linear, and use the tools of 
mathematical analysis to get insight) 
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A simple example for today: 

 

So, we are studying the binding of a toxin molecule that binds to and blocks an ion 
channel.  We want to understand the nature of this reaction.   

The experiment….express channels in a Xenopus oocyte, record the channel activity, 
flow in and wash out the toxin molecules, watch the inhibition of current flow through the 
channel, record the kinetics. 

 



 



 

Next step is to make a physical model….so we guess that this is a simple bimolecular 
reaction.   L is for the toxin and R is for the channel… 

 



Now to turn this into a mathematical model….we write down the chemical kinetics 
equation and set the initial conditions… 
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Now to turn this into a mathematical model….we write down the chemical kinetics 
equation and set the initial conditions… 

 

So then… 

 

The binding of toxin to the channel should follow single exponential kinetics… 

 



The dissociation of toxin from the channel should also follow single exponential 
kinetics… 

 



Indeed, both toxin binding and release are well-fit by singe 
exponential functions 

 

Goldstein and Miller, Biophys. J 65, p.1613



So, the model fits the data well.  Good, but does it make new 
predictions not used in arriving at the model?  Yes…. 

 

Goldstein and Miller, Biophys. J 65, p.1613



So, the model fits the data well.  Good, but does it make new 
predictions not used in arriving at the model?  Yes…. 

How should the on-rate and off-rate of toxin binding to the 
channel depend on the concentration of toxin? 

 

Goldstein and Miller, Biophys. J 65, p.1613



So, the model fits the data well.  Good, but does it make new 
predictions not used in arriving at the model?  Yes…. 

 

Goldstein and Miller, Biophys. J 65, p.1613



Ok…and finally at equilibrium: 
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So, the good-old rectangular hyperbola, or “binding isotherm”.  

 



Ok…and finally at equilibrium: 

 

Goldstein and Miller, Biophys. J 65, p.1613

So, the good-old rectangular hyperbola, or “binding isotherm”.  This gives us an 
additional check on our model….we should be able to get the dissociation 
constant (Kd) in two independent ways: 

(1) Look at fraction bound as a function of toxin (L) concentration… 
(2) Take the ratio of the off-rate and on-rate  

These better give us the same number!! 

 



Ok…and finally at equilibrium: 

 

Goldstein and Miller, Biophys. J 65, p.1613

Well….the concentration of toxin at which we get half block is 0.075 nM.  And if 
you compute the ratio of the off and on rates, you get 0.0746 nM.   

Pretty good….makes one want to believe the model. 
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How do we solve this equation? 

 



How do we solve this equation? 

 

So…the single exponential decay function. 

 



So, we dealt with the easiest problem…the top left hand corner of the space of 
problems…. 
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So…how do we proceed in (quantitatively) understanding systems in all these 
different regimes? 
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There is a deep hypothesis here that even in 
systems that seem to have large numbers of 
variables, the relevant dynamics is ultimately 
low-dimensional…comprised of just a few 
“effective variables”.  The trick for such 
systems is to find them… 
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Not everyone in the field of systems biology takes this perspective! 

For some, “understanding” means a detailed 
exposition of every component, reaction, 
and features of a particular instance of a 
system. 

Karr et al. (2012)  Cell, 150, 389-401 



Consider the status of “understanding” the relationship of heat and work in the 
early 1900’s.... 

The general approach was a detailed modeling 
of the Newtonian mechanics of each sort 
of heat engine....but then.... 



...came Sadi Carnot... 

“..the phenomenon of the production of motion by heat has 
not been considered from a sufficiently general point 
of view.  We have considered it only in machines the 
nature...of which have not allowed us to take in the 
whole extent of application...In such machines, the 
phenomenon is, in a way, incomplete.  It becomes 
difficult to recognize its principles and study its laws...” 

“In order to consider in the most general way the principle 
of the production of motion by heat, it must be 
considered independently of any mechanism or any 
particular agent.  It is necessary to establish principles 
applicable....to all imaginable heat engines, whatever 
the working substance and whatever the method by 
which it is operated...” 



...came Sadi Carnot... 

“..the phenomenon of the production of motion by heat has 
not been considered from a sufficiently general point 
of view.  We have considered it only in machines the 
nature...of which have not allowed us to take in the 
whole extent of application...In such machines, the 
phenomenon is, in a way, incomplete.  It becomes 
difficult to recognize its principles and study its laws...” 

“In order to consider in the most general way the principle 
of the production of motion by heat, it must be 
considered independently of any mechanism or any 
particular agent.  It is necessary to establish principles 
applicable....to all imaginable heat engines, whatever 
the working substance and whatever the method by 
which it is operated...” 

What emerged were the laws of thermodynamics.... 



So... 

 


