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So, today we study a real case of a biological non-linear dynamical system. 
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The van der Pol non-linear oscillator...

, where…



The van der Pol non-linear oscillator...

, where…

an unstable fixed point at the origin, 
and a stable limit cycle oscillation



The van der Pol non-linear oscillator...

, where…

the switch from slow to fast flow…



The neuronal action potential…a slight variation on the van der Pol oscillator…

A non-linear oscillator...



A non-linear oscillator...

this is essentially the van der Pol oscillator, 
with one difference…. 

 

Fitzhugh-Nagumo (1962)
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A non-linear oscillator...

the linear term to the w nullcline provides 
for thresholded oscillation…. 
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A non-linear oscillator...

for I = 0…a stable fixed point 
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A non-linear oscillator...

membrane pot

slow K+ flux

for I = 0.1…a stable fixed point, but a 
transient oscillation… 

 



A non-linear oscillator...

membrane pot

slow K+ flux

for I = 0.2…a stable fixed point, but a 
larger transient oscillation… 

 



A non-linear oscillator...

membrane pot

slow K+ flux

for I = 0.3…the fixed point de-stabilizes via 
Hopf bifurcation 

 



A non-linear oscillator...

membrane pot

slow K+ flux

This provides for a thresholded firing of 
the action potential… 

 



A non-linear oscillator...

the linear term to the w nullcline provides 
for thresholded oscillation…. 
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The Drosophila eye



Tsunoda et al., Nature (1997) 388, 244 
Shieh and Niemeyer, Neuron (1995) 14, 201

Levels of structural organization…

The molecular 
machinery...

The compound eye... 
~800 unit eyes

Each unit eye (an 
ommatidium)... 
8 photoreceptor cells

Each cell... 
~30,000 microvilli 
(the rhabdomere)

Each microvillus... 
~10,000 rhodopsin 
molecules
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The Macroscopic Impulse Response: 

 A statistical superposition of quantal responses.  This 
response is the bump latency distribution convolved 
with the average bump size and shape.

The Single Photon Response (Quantum Bump): 

          Stochastic electrical response to the absorption of a 
single photon.  Parameters: size, shape, latency of 
occurrence, and a refractory period.



Linearity at the cellular level...

Henderson and Hardie, J.Physiol. (2000) 524.1, 179 
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Calcium-dependence...

the macroscopic response.. the quantum bump....

Henderson and Hardie, J. Physiol. (2000) 524, 179



Essentially all of the proteins and small molecules involved are identified, every state-of-the-art 
high-quality experiment (single/double knockouts, electrophysiology, calcium imaging, 
etc.) has been carried out… 

BUT...yet we do not understand even the most basic response of this system – the quantum 
bump.   

 



The basic questions 

 (1) What is the basis for the quantum bump...what determines latency, size/shape, and 
refraction?  Why is it an all-or-nothing event?   

 (2) What makes it so reliable following light absorption and so improbable in the dark?   

 (3) Why do we get exactly one bump per photon, never two or more? 

 



The model…

Concepts, simplifications, and an important feature… 

(1) You can think of the model as comprising four conceptual “modules”.  An bump trigger 
(input), a bump initiator (A), a bump generator (B), and a negative feedback unit (C). 

Pumir et al., PNAS (2008) 105, 10354



The model…

Concepts, simplifications, and an important feature… 

(1) You can think of the model as comprising four conceptual “modules”.  An bump trigger 
(input), a bump initiator (A), a bump generator (B), and a negative feedback unit (C). 

(2) Calcium-dependent negative feedback is lumped into one process (C*) for right now. Trp 
channels are lumped into one species (B*). 

Pumir et al., PNAS (2008) 105, 10354



The model…

Concepts, simplifications, and an important feature… 

(1) You can think of the model as comprising four conceptual “modules”.  An bump trigger 
(input), a bump initiator (A), a bump generator (B), and a negative feedback unit (C). 

(2) Calcium-dependent negative feedback is lumped into one process (C*) for right now. Trp 
channels are lumped into one species (B*). 

(2) Some known molecules (e.g. M* inactivation, and InaD) are represented implicitly in the 
model. 

Pumir et al., PNAS (2008) 105, 10354



The model…

Concepts, simplifications, and an important feature… 

(1) You can think of the model as comprising four conceptual “modules”.  An bump trigger 
(input), a bump initiator (A), a bump generator (B), and a negative feedback unit (C). 

(2) Calcium-dependent negative feedback is lumped into one process (C*) for right now. Trp 
channels are lumped into one species (B*). 

(2) Some known molecules (e.g. M* inactivation, and InaD) are represented implicitly in the 
model. 

(3) System operates at the stochastic limit (1 M*, 1-5 G*, 1-5 PLC*…15-25 B*), so requires 
stochastic simulation methods (numbers, not concentrations of species).  We will 
describe the method for computational simulation of the reaction dynamics shortly...

Pumir et al., PNAS (2008) 105, 10354



The model…mathematically:



Parameter estimation: 

Free parameters fit to average quantum bump size 
and shape, and average latency. 

And...



Parameter estimation: 

Free parameters fit to average quantum bump size 
and shape, and average latency. 

And...as you will see soon, the system generates 
nice looking quantum bumps upon 
stochastic numerical simulation...



Parameter estimation: 

Free parameters fit to average quantum bump size 
and shape, and average latency. 

Results in a “solution manifold”,  but basic mechanism of 
bump generation is independent of specific 
parameter values.



How can we “see” the system dynamics in some intuitive way?  And...what about the 
stochasticity?



(1)  We want to “see” the system dynamics in some intuitive way...and... 

(2)   System operates at the stochastic limit (1 M*, 1-5 G*, 1-5 PLC*…15-25 B*), so requires 
stochastic simulation methods (numbers, not concentrations of species).   

Let’s deal with item 2 first....the Gillespie method (another interlude).

Pumir et al., PNAS (2008) 105, 10354



Stochastic simulation...the Gillespie method.



Now to deal with stochastic fluctuations…the Gillespie Method

Step 1: The current “state” of the system



Now to deal with stochastic fluctuations…the Gillespie Method

Step 1:

Step 2: Calculate forward and reverse rates for time t

The current “state” of the system
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Step 2:

Step 3:

Calculate forward and reverse rates

The current “state” of the system

Generate two random numbers



Now to deal with stochastic fluctuations…the Gillespie Method

Step 1:

Step 2:

Step 3:

Calculate forward and reverse rates

The current “state” of the system

Generate two random numbers

Update time…so that time steps are a 
function of how fast the system 

dynamics are evolving

Step 4:



Now to deal with stochastic fluctuations…the Gillespie Method

Step 1:

Step 2:

Step 3:

Calculate forward and reverse rates

The current “state” of the system

Generate two random numbers

Update timeStep 4:

Step 5: Update state of system…so that the 
system statistically moves in 

the direction of maximal 
change

0 1



Now to deal with stochastic fluctuations…the Gillespie Method

Step 1:

Step 2:

Step 3:

Calculate forward and reverse rates

The current “state” of the system

Generate two random numbers

Update timeStep 4:

Step 5: Update state of system

Step 6: Repeat



Stochastic simulation...the Gillespie method.



The result of one trial of Gillespie simulation of this system.  “Light stimulation” amounts to 
creating one active rhodopsin molecule instantly at t=0.

A
*

B
*

C
*



Several quantum bump trials (1M* made at t=0):



How can we “see” the system dynamics in some more intuitive way?  This is a seven-
dimensional dynamic!!



How can we “see” the system dynamics in some intuitive way?  This is a seven-
dimensional dynamic!!

But, it turns out that all the reactions except for B* (the 
channels) and C* (the negative feedback) 
equilibrate fast.  All the relevant dynamics are 
effectively in a two-dimensional subspace of the 
overall dynamics!



System dynamics in the B* - C* plane:



System dynamics in the B* - C* plane:
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System dynamics in the B* - C* plane:

PLC*=0

…fixed point stable?



System dynamics in the B* - C* plane:

PLC*=0

…a stable fixed point in the dark



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

…fixed point destabilizes (via Hopf bifurcation)



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

PLC*=0



System dynamics in the Trp* - B* plane:
Again, one trial of stochastic simulation of this system.  “Light stimulation” amounts to creating 
one active rhodopsin molecule instantly at t=0.
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System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

PLC*=0

(1) In the dark, the system has a stable fixed point at B*=0.  
Per the model, a quantum bump is impossible from thermal 
activations of Trp channels.
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(1) In the dark, the system has a stable fixed point at B*=0.  
Per the model, a quantum bump is impossible from thermal 
activations of Trp channels. 

(2) But, upon activation of PLC*, the system dynamics causes 
the cascade to work as a stochastic relaxation oscillator…
building up DAG to where calcium influx through Trp* 
ignites the positive feedback.  This destabilizes the fixed 
point, triggers a regenerative opening of Trp channels, and 
causes the system to go through a “limit-cycle oscillation”.



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

PLC*=0

(1) In the dark, the system has a stable fixed point at B*=0.  
Per the model, a quantum bump is impossible from thermal 
activations of Trp channels. 

(2) But, upon activation of PLC*, the system dynamics causes 
the cascade to work as a stochastic relaxation oscillator…
building up DAG to where calcium influx through Trp* 
ignites the positive feedback.  This destabilizes the fixed 
point, triggers a regenerative opening of Trp channels, and 
causes the system to go through a “limit-cycle oscillation”. 

(3) Deactivation of PLC* and build-up of C* shuts-off the bump 
and causes the system to go into a refractory phase until C* 
itself deactivates.



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

PLC*=0

An oscillator that lives for one oscillation!  



System dynamics in the B* - C* plane:

PLC*=0

PLC*=3

PLC*=0

An oscillator that lives for one oscillation!   

What kind of oscillator is that?  One that makes exactly one QB 
per photon...a light-induced single cycle oscillator.



A test of the model…what if we don’t let M* deactivate?

Computationally…by setting 



A test of the prediction of oscillation…what if we don’t let 
M* deactivate?



A test of the prediction of oscillation…what if we don’t let 
M* deactivate?
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A test of the model…what if we don’t let M* deactivate?

Experimentally…by arrestin 
knockout

Computationally…by setting 



A test of the prediction of oscillation…what if we don’t let 
M* deactivate?

model w; arr23



So, an explanation for why we get just one bump per 
photon....

In arrestin knockout

In wild-type



Fundamentally different from the vertebrate rod cell…

D.A. Baylor (1996) PNAS. 93, 560-6



Vertebrate and Invertebrate photoreceptors…comparative physiology

Vertebrate (rod) Invertebrate (fly photoreceptor)

Gt, cGMP cascade                          Gq, PLC-β pathway 

Hyperpolarizes                               Depolarizes 

Slow (~1-10 sec)               fast (~50 msec) 

Consistent latency                         Randomly distributed latency 

Sterotyped size/shape               Variable size 

Saturation at ~500 phot/sec           Saturation at ~106 phot/sec

R.C. Hardie (2001) J. Exp. Biol. 204, 3403-9
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1. The quantum bump is the result of a light-induced non-linear (relaxation) oscillator, 
converting photons into a fast, all-or-nothing opening of 25-30 ion channels.   
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Conclusions 

1. The quantum bump is the result of a light-induced non-linear (relaxation) oscillator, 
converting photons into a fast, all-or-nothing opening of 25-30 ion channels.   

2. Variable latency comes from the stochasticity of igniting positive feedback and size/shape 
come from Ca2+-dependent dynamics of positive and negative feedback. 

3. Single bump per photon is guaranteed by deactivating the relaxation oscillator within one 
oscillation by shutting off early intermediates in signaling. 

4. The reliability of the bump upon photon absorption and the absence of the bump in the 
dark is explained by the sharp threshold for igniting Ca2+-mediated positive feedback.  
Below this, vanishingly low bump probability....above this, bumps with probability 
approaching one. 

A first explanation of the basic system behaviors....and can drive further experimentation...or...



Next, we will use everything we have learned up to now to take on the problem of protein function 
and evolution….a non-linear dynamical system comprised of many parts. 
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