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Knowledge-based potentials are statistical parameters derived

from databases of known protein properties that empirically

capture aspects of the physical chemistry of protein structure

and function. These potentials play a key role in protein design

by improving the accuracy of physics-based models of

interatomic interactions and enhancing the computational

efficiency of the design process by limiting the complexity of

searching sequence space. Recently, knowledge-based

potentials (in isolation or in combination with physics-based

potentials) have been applied to the modification of existing

protein function, the redesign of natural protein folds and the

complete design of a non-natural protein fold. In addition,

knowledge-based potentials appear to be providing important

information about the global topology of amino acid

interactions in natural proteins. A detailed study of the methods

and products of these protein design efforts promises to greatly

expand our understanding of proteins and the evolutionary

process that created them.
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Introduction
Efforts in protein design are motivated by two overlapping

goals: developing novel molecular reagents that expand

upon and improve the function of natural proteins; and

testing our fundamental understanding of how proteins

fold and function. Both aims, however, share the problem

of contending with the dramatic complexity of searching

sequence and conformation space. For even small proteins

(say, comprising 100 amino acids), 20100 possible

sequences exist and each sequence may have an enormous

number of conformational states. As has been discussed

extensively [1], the vastness of these spaces precludes

exhaustive computational or experimental searching. In

addition, a computational protein design algorithm must
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also be able to score sequences for the one(s) most likely to

adopt the desired structure and/or function; in essence, this

process involves finding the sequences that lie at the global

minimum of an energy function that models the physical

interactions between atoms. In an ideal case, this energy

function would include just the appropriate combination

of fundamental physical forces and computation would be

efficient enough to identify the global minima in a reason-

able amount of time. At this time, such a target energy

function for protein design does not exist; instead, inves-

tigators incorporate information from databases of protein

structure and function into knowledge-based potentials

(KBPs) that serve to both increase the accuracy of scoring

functions and restrict the conformational search problem.

In this review, we begin with several exciting new

advances in protein design, grouped by the primary

sources of the KBPs utilized. In addition, we discuss

new applications of KBPs to define the quantity of infor-

mation encoded in protein sequences by mapping the

statistically independent components of proteins. This

work suggests that KBPs may help define the basic evolu-

tionary design rules of proteins.

To facilitate discussion, Figure 1 shows a schematic repre-

sentation of relationships between protein sequence,

structure and function. The three ‘worlds’ represent our

databases of acquired knowledge about proteins, and

mappings between them represent key topical problems

of protein analysis and design. A particular sequence (red

dot in the sequence world) adopts a native state ensemble

in the structure world (the protein folding problem), which

then displays a particular biochemical activity (the struc-

ture-function problem). Knowledge-based protein design

can be abstractly defined as the attempt to use information

from the distribution of natural proteins in any of these

three worlds to identify new, non-natural sequences that

encode desired target regions in the structure and function

worlds. Evolution is represented in this schematic as the

natural process of function-based design through random

sequence variation and selection based on functional fit-

ness. In this view, the sequence space corresponding to a

natural protein family is intimately linked to the nature of

the evolutionary fitness function. Thus, an account of the

selection constraints that shape the sequence space dis-

tribution of protein families may help in defining general

principles, if any, of the evolutionary design of proteins.

Knowledge-based potentials derived from
structural databases
The ever-expanding Protein Data Bank (PDB) is a valu-

able database of structural information about proteins and

comprises the basis of many KBPs. Potentials derived
www.sciencedirect.com
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Figure 1

Schematic representation of the protein sequence-structure-function

problem. Each ‘world’ (see labels) abstractly represents the space of

possible sequences, structures and biochemical functions. Thus, one

natural sequence (red dot in the sequence world) corresponds to one

native state ensemble and in turn corresponds to one region of the

function world. Mappings between the worlds represent various core

problems in protein analysis and design, all of which ultimately

depend on understanding the global pattern of physical forces

between atoms specified by the evolutionary fitness function. A key

concept is that KBPs represent statistical parameters extracted from

analyses of the distribution of natural proteins in any of these worlds;

these potentials can provide key information that contributes to

efficiently selecting well-folded and possibly functional non-natural

sequences.
from structural libraries include, but are not limited to:

solvation potentials that bias hydrophobic and hydrophi-

lic residues to the core and surface of a protein, respec-

tively [2–4]; binary patterning [5,6]; rotamer libraries that

constrain amino acid sidechain orientations to those com-

monly observed in natural proteins [7]; libraries of short

residue fragments observed in the PDB [8]; hydrogen-

bonding potentials [9]; and electrostatic potentials [10].

These various potentials are often combined in various

ways with and without approximate physical potentials to

produce hybrid energy functions used to score sequences

during protein design. As an example, RosettaDesign, a

highly successful algorithm for protein design, has an

energy function consisting of a 6,12 Lennard–Jones

potential, an implicit solvation model, a hydrogen-bond-

ing potential, backbone-dependent rotamer probabilities,
www.sciencedirect.com
f, c space-dependent amino acid probabilities, and an

electrostatics term [11].

The power of these structure-derived potentials is evi-

dent in the remarkable advances in protein design efforts

in recent years. In an approach that is inspiring for its

simplicity, Hecht et al. [12] have designed both a-helix

bundles and b-sheet proteins using no information other

than the binary patterning of polar and non-polar residues

commonly observed in a helices and b strands. Recently,

they discovered that these four-helix bundles can possess

intrinsic esterase activity and suggested that the activity

of these minimally designed sequences serve as a bench-

mark for more sophisticated design attempts [13]. Match-

ing polar and non-polar residues to compatible

environments also anchored the principles that enabled

the design of water-soluble analogs of phospholamban

[14] and the KcsA potassium channel [15]. Although the

potentials used to select amino acid identities were more

complicated than simple binary patterning, the selection

of positions to mutate was determined based on solvent

exposure, and the swapping of hydrophobic surface resi-

dues for hydrophilic ones was a key aspect in both of the

design processes. Coiled-coil proteins have also been

amenable to design using relatively simple patterning

of hydrophobic, charged and polar residues [16]. Recent

work has used these simple design elements to identify

coiled-coil interaction determinants and, through both

positive and negative design of a small number of resi-

dues, has engineered specificity for homodimeric and

heterodimeric interfaces [17]. This work in several dif-

ferent systems shows how remarkably simple design rules

can, in some cases, yield successful protein designs.

Several groups have combined structure-based potentials,

physics-based potentials, and efficient sequence and con-

formation searching to redesign portions of proteins and

recover novel sequences with desired functions. Recent

achievements include engineering triose phosphate iso-

merase activity into a non-enzymatic protein [18�], and

redesigning the ligand-binding pocket of periplasmic

binding proteins to bind Zn2+ [19] and several different

small molecules [20,21]. In each of these examples, a

limited set of residues near the binding region were

allowed to vary in the design process, resulting in 5–22

mutations. A methodologically similar effort by Shifman

and Mayo [22,23] yielded a calmodulin variant (13 muta-

tions) with similar affinity for its target, but significantly

increased specificity when considering other natural tar-

gets. Whereas the above efforts used deterministic dead-

end elimination algorithms to identify the single best

sequences, Kono and Saven [24] developed a knowledge-

based statistical method that estimates the site-specific

amino acid probabilities for each position in a protein. By

choosing the most probable amino acid for most positions

in the sequence (some amino acids considered essential

for function were not allowed to vary), a redox-active
Current Opinion in Structural Biology 2006, 16:508–513
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minimal rubredoxin mimic [25] and a monomeric helical

dinuclear metalloprotein [26] were constructed and func-

tionally verified.

The complete design of protein folds has also been suc-

cessfully demonstrated [11,27–29]. These results convin-

cingly show that stable proteins with well-packed cores can

be designed computationally. In fact, preliminary obser-

vations suggest that some of these designed proteins may

actually be significantly more stable than their natural

counterparts [11]. Perhaps the most exciting protein

design using structure-based potentials is the report from

Kuhlman et al. [8] describing a novel protein, Top7. The

structure of Top7 is highly similar (�1.2 Å) to its design

model and represents a fold topology not found in natural

proteins. Top 7 was designed from models built with

three- and nine-residue fragments found in the PDB,

employing iterative cycling between sequence optimiza-

tion (evaluating rotamer selections with a combination of

physics- and structure-derived potentials) and backbone

conformation adjustment. The resulting protein is extre-

mely stable (Tm > 98 8C), which is consistent with the

target design principle of optimal atomic packing.

Knowledge-based potentials derived from
sequence databases
When sufficiently large and diverse, multiple sequence

alignments (MSAs) can provide a measure of the sequence

constraints for protein folding and function. Basic princi-

ples of molecular evolution suggest that, if the identity of

an amino acid at a particular position is important for

fitness, it should be conserved in related proteins. This

hypothesis is the basis of the ‘consensus sequence’

approach to modifying protein function, whereby a parti-

cular sequence is altered by changing one or more amino

acids in a particular protein to the most commonly encoun-

tered amino acid in an MSA of the protein family. Two

recent examples of this approach are a b-lactamase variant

containing eight mutations whose melting temperature

was 9 8C higher than that of the natural molecule [30] and a

triple mutant of an IgG1 CH3 domain that was stabilized by

10 8C [31]. Evolutionary relationships within a protein

family have also been used to infer ancestral protein

sequences and functions — a fascinating application of

KBPs to understand the paths of evolution. Ancestral gene

reconstruction for fluorescent proteins [32], serine pro-

teases [33], steroid receptors [34], bacterial elongation

factors [35] and archosaur rhodopsin [36] not only has been

very successful at generating functional protein

sequences, but also has led these authors to suggest that

ancient proteins are less specialized [32–34].

How much of the total information content of protein

sequences can be extracted from analyses of MSAs? Clas-

sical studies show that the amino acid sequence contains all

the information necessary for protein folding and function

[37], but, in principle, this information might be held in
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complex, high-order statistical interactions between amino

acid positions that are not necessarily evident in simple

models of sequence conservation that treat sites as if they

were statistically independent of one another. To develop

a more physically consistent model of sequence conserva-

tion that takes into account the cooperative interactions of

residues, several groups have now developed algorithms

for capturing the correlated evolution of residues from

MSAs [38–43]. One such method, statistical coupling ana-

lysis (SCA), provides a global analysis of conserved evolu-

tionary interactions between pairs of sequence positions in

large and diverse MSAs, and shows strong consistency with

experimental data [38,44–46]. Recently, Socolich et al.
[47��] demonstrated that the statistical co-evolution infor-

mation extracted by the SCA is sufficient to specify the fold

of a small protein — the WW domain (Figure 2). In a

companion study, Russ et al. [48��] showed that the SCA-

designed artificial proteins exhibited the same range of

functional properties (ligand affinity and specificity) as

natural WW domains. This approach for creating artificial

proteins is interesting in that no structural or physiochem-

ical information was used in the design, and that only a

small fraction of the possible pairwise inter-residue con-

straints were incorporated. More importantly, this work

argues that the number of constraints necessary to define a

protein’s fold and function may be far less than theoreti-

cally possible.

Other sequence-based designs support the notion that the

constraints required to specify protein structure and func-

tion are relatively sparse. Gene-shuffling experiments

start with several different sequences and use recombina-

tion at the level of predefined blocks or single amino acids

to create libraries of chimeric sequences. One recent

experiment used three cytochrome P450 sequences

(�65% amino acid identity to each other) and recombined

eight sequence blocks to successfully create a library

containing significant numbers of folded and functional

chimeric P450 proteins [49]. This fragment-based

method relies on a structure-based computational analysis

to identify the optimal recombination sites for sequence

variation. Genetic shuffling at the level of single amino

acids has also been shown to generate functional proteins

with significant levels of sequence diversity [50]. An

interesting example of the combination of these methods

is a project to develop a glyphosate tolerance gene [51�].
Castle et al. began with three glyphosate N-acetyltrans-

ferase (GAT) genes and conducted iterative rounds of

fragment-based or site-independent recombination fol-

lowed by functional selection, whereby the most

improved variants were used as the parents of the next

recombination reaction. After eleven total iterations and

the incorporation of diversity from four other sequences,

enzyme efficiency was improved �10,000-fold and high

levels of glyphosate resistance were conferred on trans-

formed plants. That these gene-shuffling techniques

generate libraries with many folded and functional
www.sciencedirect.com
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Figure 2

Structural comparison of natural and designed WW proteins. (a–c) Cartoon representations of three natural WW domains from dystrophin (PDB

code 1eg3), YAP65 (PDB code 1k9r) and Nedd4 (PDB code 1i5h). (d) Solution NMR structure of an artificial WW domain, CC45 (PDB code 1ymz),

designed using SCA-based rules of sequence co-evolution extracted from an MSA of many WW domains [47��]. Quantitative comparisons of the

root mean squared deviation of backbone atoms show that the CC45 structure is about as different from natural WW domains as natural domains

are from each other.
proteins provides further support for the notion that

natural proteins encode a great deal of near energetic

independence between residues.

Knowledge-based potentials derived from
functional databases
Databases that correlate functional variation with

sequence and/or structure variations can significantly

aid design efforts by targeting sequence variation to

specific determinants of protein function. For example,

Yang et al. [52] introduced a Ca2+-binding site into a non-

Ca2+-binding protein. The key aspect of this study is the

computational survey of naturally occurring Ca2+-binding

motifs in the context of their target protein to identify a

Ca2+-binding site that is structurally and chemically

compatible with both Ca2+ binding and the surrounding

protein environment. Another study described the rede-

sign of a promiscuous sesquiterpene synthase into several

novel enzymes with greatly improved specificities [53��].
This experiment involved creating and characterizing

several enzyme libraries, each containing a single degen-

erate position. The product profiles from the variant

enzymes were then recombined computationally to pre-

dict a set of mutations that would bias the product

distribution toward the desired distributions. Construc-

tion and testing of the novel proteins revealed that the

predicted mutations did indeed alter product specificity

as desired. Again, these studies highlight the energetic

simplicity of proteins; tuning function appears to be

possible by varying a few positions in a combinatorial

fashion to yield phenotypic diversity.

What can artificial proteins tell us about
natural proteins?
In addition to providing practical avenues for the design

of novel reagents, a major goal of protein design is to

understand the basic principles of the folding and
www.sciencedirect.com
function of natural proteins. Indeed, how well do

designed proteins really recapitulate the design of natural

proteins? As reviewed above, several studies have now

described the design of proteins that exhibit biochemical

activities similar to those of natural proteins, and there is

considerable promise for the total computational design

of even complex functional proteins. However, we sug-

gest that a proper validation of our understanding of the

design principles of natural proteins must go well beyond

the creation of artificial proteins that recapitulate struc-

tural stability and biochemical activity in vitro. For exam-

ple, proteins must function within complex physiological

environments in which negative and positive selection for

activities may exist [54], as well as other as yet unclear

constraints. In addition, a large body of work now argues

that natural proteins are selected for robustness — mean-

ing that they tolerate mutation at many sites without

dramatic changes in function. Nevertheless, natural pro-

teins also somehow maintain the capacity for rapid adap-

tive change through mutation of a few critical sites. This

type of functional response to mutation implies a hetero-

geneous architecture of natural proteins in which many

residues contribute independently or not at all, and a few

emerge as cooperative determinants of structure and

function. The success of current protein design methods

based largely on optimizing the packing of atoms suggests

that these proposed natural design properties are not

necessary conditions for producing well-folded and per-

haps even functional artificial proteins. However, it may

be that they are necessary for designing stable and func-

tional proteins that can also evolutionarily compete with

their natural counterparts. It will be interesting to carry

out a comparative analysis of the functional fitness of

artificial proteins built through different design strategies.

Thanks to the significant recent advances in diverse

protein design methods, the reagents to drive these

exciting experiments are now becoming available.
Current Opinion in Structural Biology 2006, 16:508–513
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