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Two recent streams of work suggest that pairwise interactions may be sufficient to capture the
complexity of biological systems ranging from protein structure to networks of neurons. In one
approach, possible amino acid sequences in a family of proteins are generated by Monte Carlo
annealing of a ‘Hamiltonian’ that forces pairwise correlations among amino acid substitutions to be
close to the observed correlations. In the other approach, the observed correlations among pairs
of neurons are used to construct a maximum entropy model for the states of the network as a
whole. We show that, in certain limits, these two approaches are mathematically equivalent, and
we comment on open problems suggested by this framework.

I. INTRODUCTION

In systems composed of many elements, rich and
complex behavior can emerge from simple interactions.
Indeed, for many systems studied by physicists and
chemists, we can understand almost everything by think-
ing just about interactions between pairs of elements.
Sometimes this is an essentially exact statement: (al-
most) all the complexity of chemical bonding and reac-
tivity has its origins in the Coulomb interactions among
electrons and protons, and the total energy associated
with this interaction is a sum over pairs of particles. Al-
ternatively, the pairwise description might not be micro-
scopically exact, but could still be a very good approxi-
mation, as in the description of many different kinds of
magnets (ferromagnets, antiferromagnets, spin glasses)
using only interactions between pairs of spins. In fact,
pairwise interactions can generate essentially unlimited
complexity, since finding the ground state of a model
magnet with arbitrary pairwise interactions among the
spins is an NP–complete problem [1].

Could models based on pairwise interactions be pow-
erful enough to capture the behavior of biological sys-
tems? One the one hand we know that pairwise inter-
actions can provide considerable explanatory power, but
on the other hand restricting our description to pairwise
interactions is an enormous simplification. The tension
between the physicists’ desire for simplification and the
biologists’ appreciation of complexity is the subject of
well known jokes [2]. Jokes aside, biological systems of-
ten have many elements with no obvious geometrical ar-
guments for simplification, and certainly there are many
cases where the elements (bases along DNA, amino acids
along a single protein chain, proteins, cells, ...) have
many opportunities to interact in combinatorial fashion
as they generate biological function. Two recent streams
of work have led to a re–examination of these issues.

Consider, for example, a protein with N amino acids.
The structure and function of the protein is determined
by its sequence, but these often are robust to small

changes in sequence. More profoundly, a large family
of proteins may share essential structural and functional
features while having widely divergent sequences. We
would like to have a description of this ensemble of se-
quences, ideally being able to write down the probabil-
ity distribution out of which functional sequences are
drawn. Recent work argues that an effective description
of this sequence ensemble for a protein family can be ob-
tained by taking account of pairwise correlations among
amino acids at different sites, but ignoring all higher or-
der effects [3, 4]. Although this work does not provide
an explicit construction of the underlying distribution,
it does provide a Monte Carlo procedure for generat-
ing new sequences that are consistent with the pairwise
correlations in known families, and sequences generated
in this way have been proven experimentally to be fully
functional.
What seems like a very different problem is provided

by networks of neurons. If we look in a small window of
time, then each neuron either does or does not generate
an action potential (spike). For two cells chosen at ran-
dom out of a densely connected collection of neurons,
one typically finds that pairwise correlations are weak
but statistically significant. Recently it has been sug-
gested that the full pattern of correlations among all the
neurons in such a network can be described by the maxi-
mum entropy model [5, 6] that is consistent with the ob-
served pairwise correlations, and this approach has been
shown to provide successful predictions for the combina-
torial patterns of activity in the vertebrate retina as it
responds to natural movies [7, 8]. These maximum en-
tropy models in fact are Ising models with pairwise in-
teractions, which have long been discussed as schematic
models for neural networks [9, 10]; here the Ising model
emerges directly as the least structured model consistent
with the experimentally measured patterns of coincident
spiking among pairs of cells.
These two different examples represent two very differ-

ent implementations of the idea that complex structures
can emerge from pairwise interactions. It is important
to note that in neither case is there any hope that the

http://arxiv.org/abs/0712.4397v1


2

pairwise description is microscopically exact. Thus the
apparent success of the pairwise approximation provides
a first hint that these systems, despite their complexity,
are simpler than they might have been. This idea has
been reinforced by yet more recent application of the
pairwise, maximum entropy models to other neural sys-
tems [11, 12, 13], to a kinase cascade network [14], and
to the patterns of gene expression in yeast [15].
Biochemical, genetic and neural networks all have dif-

ferent structures, and the ‘networks’ of amino acids in a
protein are yet more different. The mathematical ap-
proaches taken in Refs [3, 4, 23] and [7, 8] also are
very different, although the theme of pairwise correla-
tions runs through both analyses. Here we show that
the mathematical differences are only differences of em-
phasis: In the relevant limit, the Monte Carlo meth-
ods of Refs [3, 4, 23] generate samples drawn out of the
maximum entropy probability distribution that would
be constructed using the methods of Refs [7, 8]. Thus
we have a unified framework for exploring the potential
of pairwise interactions to tame the complexity of these
and other biological systems. Within this framework we
identify some open problems, and comment on the im-
plicit analogies between neural networks and proteins.

II. SETTING UP THE PROBLEM

Let the system we are studying be described by vari-
ables σi that are associated with each element or site i,
where i = 1, 2, · · · , N . For a network of neurons, i can
label the individual cells, and σi marks whether that cell
generated an action potential in a small window of time;
taken together, the set σ1, σ2, · · · , σN ≡ {σi} defines the
pattern of spiking and silence across the whole network.
For a protein, i is an index into the amino acid sequence,
and σi indicates which amino acid is found at site i along
this sequence; the full sequence is defined by {σi} [16].
We will phrase our discussion in terms of “operators”

Ôµ({σi}) on the set of variables {σi}. The simplest oper-
ators are the variables σi themselves. For neurons, know-
ing the expectation values 〈σi〉 means that we know the
probability of cell i generating an action potential in a
small window of time—the “firing rate” of the cell. For a
protein, knowing 〈σi〉 means that we know the probabil-
ity of finding each of the twenty possible amino acids at
position i in the sequence. The next most complicated
operators involve pairs of variables; knowing the expec-
tation values of these operators corresponds to knowing
the probability of two cells generating synchronous ac-
tion potentials, or the joint probabilities of finding two
amino acids at particular locations along the protein se-
quences. The central claim of the recent work reviewed
above is that knowledge of the expectation values 〈Ôµ〉
for these “one body” and “two body” operators is suffi-
cient to describe, at least to a good approximation, the
functional biological system.
One approach to using knowledge of the expectation

values 〈Ôµ〉 is to construct a probability distribution for
the states of the system, P ({σi}) that is consistent with
this knowledge but otherwise is as random or unstruc-
tured as possible; this is the maximum entropy distribu-
tion [5]. The form of this distribution is given by

P ({σi}) =
1

Z({gµ})
exp

[

−
K
∑

µ=1

gµÔµ({σi})

]

, (1)

where the partition function Z serves to normalize the
distribution;

Z({gµ}) =
∑

{σi}

exp

[

−

K
∑

µ=1

gµÔµ({σi})

]

. (2)

By analogy with statistical mechanics it is useful to de-
fine the free energy

F ({gµ}) = − lnZ({gµ}). (3)

Note that there is no real temperature in this problem,
or equivalently we have chosen units in which kBT = 1.
The coupling constants gµ have to be chosen so that
the expectation values in this distribution are equal to
their known values, which is equivalent to solving the
equations

∂F

∂gµ
= 〈Ôµ〉. (4)

This maximum entropy approach is the one used in re-
cent work on the analysis of correlations in networks of
neurons [7, 8].
As an alternative to the maximum entropy construc-

tion, imagine that we create M copies of the system,

with variables {σ
(1)
i }, {σ

(2)
i }, · · · , {σ

(M)
i }. We can evalu-

ate the empirical expectation values of the operators Ôµ

across these M copies,

〈Ôµ〉emp =
1

M

M
∑

n=1

Ôµ({σ
(n)
i }). (5)

Given each of these empirical expectation values, we can
try to form a measure of how close these M systems are
to being representative of the true expectation values.
Consider

χ2 =
1

2

K
∑

µ=1

Wµ[〈Ôµ〉emp − 〈Ôµ〉]
2, (6)

where the Wµ are weights, expressing how seriously
we take deviations in each of the individual operators.
Notice that χ2 is a function of all M × N variables

{σ
(1)
i , σ

(2)
i , · · · , σ

(M)
i }. We can try to force these vari-

ables to be representative of the expectation values 〈Ôµ〉
by drawing from the probability distribution

P ({σ
(1)
i , σ

(2)
i , · · · , σ

(M)
i }) =

1

ZM
exp

[

−
1

T
χ2

]

, (7)
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and then letting T → 0; again, ZM is a partition function
that serves to normalize the distribution. This annealing
procedure is the one used in recent work on the synthesis
of artificial proteins [3, 4, 23].

III. MATHEMATICAL EQUIVALENCE OF THE

TWO METHODS

Our goal is to show that the probability distribution
forM copies, Eq (7), really is equivalent to the maximum
entropy distribution, Eq (1), in the limit T → 0 and
M → ∞. Interestingly, we will see that in this limit
the precise values of the weights Wµ which enter the
definition of χ2 are irrelevant.

To understand the predictions of the annealing
method, we need to calculate the partition function ZM ,

ZM =
∑

{σ
(n)
i }

exp

[

−
1

T
χ2

]

. (8)

It will be useful near the end of our discussion to define
another free energy G = − lnZM . Note that this free en-
ergy depends on the expectation values {〈Ôµ〉}, whereas
the free energy F depends on the coupling constant {gµ}.

To make progress we use the standard approach of
introducing auxiliary fields φµ to unpack the quadratic
terms in the exponential:

exp

[

−
1

T
χ2

]

= exp

[

−
1

2T

K
∑

µ=1

Wµ[〈Ôµ〉emp − 〈Ôµ〉]
2

]

(9)

=

[

K
∏

µ=1

(

T

2πWµ

)1/2
]

∫

dφ1

∫

dφ2 · · ·

∫

dφK exp

[

−

K
∑

µ=1

Tφ2
µ

2Wµ
+ i

K
∑

µ=1

φµ〈Ôµ〉emp − i

K
∑

µ=1

φµ〈Ôµ〉

]

(10)

=

[

K
∏

µ=1

(

T

2πWµ

)1/2
]

∫

dKφ exp

[

−

K
∑

µ=1

Tφ2
µ

2Wµ
− i

K
∑

µ=1

φµ〈Ôµ〉

]

exp

[

+
i

M

M
∑

n=1

K
∑

µ=1

φµÔµ({σ
(n)
i })

]

.

(11)

Note that only the last term under the integral depends on the variables {σ
(n)
i }. Thus when we compute the partition

function we can take the sum over these variables under the integral and write

ZM =
∑

{σ
(n)
i }

exp

[

−
1

T
χ2

]

=

[

K
∏

µ=1

(

T

2πWµ

)1/2
]

∫

dKφ exp

[

−

K
∑

µ=1

Tφ2
µ

2Wµ
− i

K
∑

µ=1

φµ〈Ôµ〉

]

∑

{σ
(n)
i }

exp

[

+
i

M

M
∑

n=1

K
∑

µ=1

φµÔµ({σ
(n)
i })

]

.

(12)

The crucial piece of this equation is the sum over all possible states of the M copies of the system, but since the M
copies are independent given {φµ}, we can simplify:

∑

{σ
(n)
i }

exp

[

+
i

M

M
∑

n=1

K
∑

µ=1

φµÔµ({σ
(n)
i })

]

=





∑

{σi}

exp

[

+
i

M

K
∑

µ=1

φµÔµ({σi})

]





M

. (13)

Now we notice that the sum over states in this expression is just the partition function of the maximum entropy
distribution, Eq (2), if we identify −iφµ/M = gµ. In this way we can relate the partition function for the annealing
problem to an integral over the partition function of the maximum entropy problem,

ZM =

[

K
∏

µ=1

(

T

2πWµ

)1/2
]

∫

dKφ exp

[

−

K
∑

µ=1

Tφ2
µ

2Wµ
− i

K
∑

µ=1

φµ〈Ôµ〉

]

[Z({gµ = −iφµ/M})]
M

. (14)
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The form of Eq (14) suggests that we change variables from φµ to the coupling constants gµ, and, recalling that
Z({gµ}) = exp[−F ({gµ})], we obtain

ZM =

[

K
∏

µ=1

(

T

2πWµ

)1/2
]

(iM)K
∫

dKg exp

[

+

K
∑

µ=1

M2Tg2µ
2Wµ

+M

K
∑

µ=1

gµ〈Ôµ〉 −MF ({gµ})

]

(15)

=





K
∏

µ=1

(

T̃

2πMWµ

)1/2


 (iM)K
∫

dKg exp
[

−MF({gµ}; {Wµ}; T̃ )
]

, (16)

where the effective free energy

F = F ({gµ})−

K
∑

µ=1

gµ〈Ôµ〉 −

K
∑

µ=1

T̃ g2µ
2Wµ

, (17)

and T̃ = MT . The partition function of the annealing
problem involves an integral over coupling constants, and
the integrand is the exponential of M times a free en-
ergy that is of order unity as the number of copies M
becomes large. Thus, as M → ∞, the integral should be
dominated by the saddle point where ∂F/∂gµ = 0 for
all µ, or equivalently by values of the coupling constants
such that

∂F

∂gµ
= 〈Ôµ〉+

T̃

Wµ
gµ. (18)

If we consider the limit T̃ → 0, then this equation is
exactly the same as Eq (4) which sets the values of the
coupling constants in the maximum entropy approach.
Thus we can write the saddle point approximation to
ZM as

ZM ≈ A exp

[

−MF ({g∗µ}) +M
K
∑

µ=1

g∗µ〈Oµ〉

]

, (19)

where {g∗µ} are the coupling constants which provide the
solution to Eq (4), and A is a constant that does not de-
pend onM . Finally, we can extract the largeM behavior
of the free energy G = − lnZM ,

lim
M→∞

1

M
G({〈Ôµ〉}) = F ({g∗µ})−

K
∑

µ=1

g∗µ〈Oµ〉. (20)

To understand the result in Eq (20), we should step
back to our original formulation of the two methods. The
free energy G in the annealing method refers to M copies
of the system, so it is not surprising that it is propor-
tional to M ; once we take out this factor we almost get
the free energy F from the maximum entropy method.
The difference is that in the maximum entropy formu-
lation the behavior of the system is a function of the
coupling constants gµ, while in the annealing method
the free energy is explicitly a function of the expecta-
tion values 〈Ôµ〉. This is exactly the situation for the

Helmholtz and Gibbs free energies in thermodynamics—
the Helmholtz free energy is a function of the volume,
and the Gibbs free energy is a function of the pressure.
More generally, whenever we have conjugate variables
(pressure and volume, particle number and chemical po-
tential, ... ), we use the Legendre transformation to con-
nect descriptions based on one or the other member of
the conjugate pair [17].
For the example of pressure and volume, we have

G(T, p) = F + pV and hence the familiar differential
relations

∂F (T, V )

∂V
= −p (21)

∂G(T, p)

∂p
= V. (22)

Crucially, F and G are descriptions of the same physical
system. More strongly, for large systems (here, M → ∞)
we know that constant pressure and constant volume en-
sembles are equivalent. For our problem, the analogous
equations are

∂F ({gµ})

∂gµ
= 〈Ôµ〉 (23)

1

M

∂G({〈Ôµ〉})

∂〈Ôµ〉
= −gµ. (24)

The conclusion is that the annealing method, in the
M → ∞, T̃ → 0 limit, describes M independent copies
of the maximum entropy model.

IV. SHOULD WE BE SURPRISED?

The derivation above is a bit circuitous, although it
does make the connections between the two approaches
explicit. We can make a somewhat shorter, if less con-
structive, argument.
The probability distribution used in the annealing cal-

culations, Eq (7), is a Boltzmann distribution and hence
a maximum entropy distribution. More precisely, it is
the maximum entropy distribution consistent with some
average value of χ2 between the observed and simulated
expectation values; as usual 〈χ2〉 is set by the value of T .
When we let T → 0, the expectation value of χ2 must
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approach its minimum value, which is zero, unless there
is something very odd about the structure of the phase
space. Thus in the T → 0 limit, the annealing method
generates samples from a maximum entropy distribution
in which the expectation values computed from the M
simulated copies of the system are exactly equal to the
observed values. Finally, if we let M → ∞, then what
we are simulating is an ensemble of samples in which the
selected expectation values exactly match their experi-
mental values, but otherwise the distribution of samples
has maximum entropy. That is, we have drawn samples
out of the maximum entropy distribution consistent with
the observed expectation values.
The subtlety of this argument, which we hope justifies

the longer calculation above, concerns the combination
of the limits M → ∞ and T → 0 and the role of the
weightsWµ in defining χ2. The careful calculation shows

that we actually need T̃ = MT → 0, which is stronger
than one might have thought, and that in this limit the
weights are irrelevant.

V. FINITE SAMPLE SIZE

Our discussion thus far has assumed that the expecta-
tion values 〈Ôµ({σi})〉 are known. In fact we never know
these expectation value exactly, since our inferences are
based on a finite data set. For networks of neurons, if
we define our variables σi as the presence or absence of a
spike from cell i in a small window ∆τ = 10−20ms, then
an experiment of ∼ 1 hr provides more than 105 samples
of the state {σi}, although of course not all these sam-
ples are independent [7, 8]. With these relatively large
sample sizes, it is plausible that we can approximate ex-
pectation values, e.g. of the pairwise correlations among
neurons Cij = 〈σiσj〉 − 〈σi〉〈σj〉, by the corresponding
time averages over the experiment, although of course
with very large networks the number of pairs can become
comparable to the number of samples and we should be
careful. For proteins, in contrast, we have only a few
families with ∼ 103 known sequences, and in many cases
one must work from fewer than 100 examples [3, 4, 23].
Correspondingly the question of how to treat the issues

of statistical significance in the estimation of of 〈Ôµ〉
has been much more at the center of the discussion of
the protein data.

Taken at face value, the construction of χ2 in Eq
(6) gives our estimates of different operators different
weights Wµ. One plausible choice for these weights (by
analogy with usual construction of χ2) is to set Wµ equal

to the inverse of the variance in our estimates of 〈Ôµ〉.
This might suggest that the distribution in Eq (7) really
does represent the probability of finding the empirical
averages 〈Ôµ〉emp, with T inversely proportional to the
number of independent samples Nsamp in our original
database. But from the maximum entropy distribution
we can compute the expected variance in our estimates
of the expectation values, and this is

[

δ〈Ôµ〉est

]2

=
1

Nsamp

∂2F ({gµ})

∂g2µ
. (25)

Unfortunately, the same arguments can be used to show
that errors in the estimates of the different operators in
general are not independent, since

[

δ〈Ôµ〉estδ〈Ôν〉est

]

=
1

Nsamp

∂2F ({gµ})

∂gµ∂gν
. (26)

Thus, while the construction of χ2 provides a convenient
heuristic, it can’t really represent the likelihood of mea-
suring empirical expectation values given the true expec-
tation values. Conveniently, in the limitM → ∞, T → 0,
all these concerns disappear and even the precise values
of the Wµ are irrelevant.

But if the construction of χ2 doesn’t capture the sta-
tistical significance of our estimated expectation values
correctly, what should we do instead? Once we know
that we are looking for the maximum entropy distribu-
tion consistent with a certain set of expectation values,
we know that the form of the distribution is given by Eq
(1), and our task is to infer the parameters {gµ}. If we
imagine that we have Nsamp independent samples, with

states {σ
(1)
µ , σ

(2)
µ , · · · , σ

(Nsamp)
µ }, then the probability of

observing these data is given by

P ({σ(1)
µ , σ(2)

µ , · · · , σ(Nsamp)
µ }) =

[

1

Z({gµ})

]Nsamp

exp



−

K
∑

µ=1

gµ

Nsamp
∑

n=1

Ôµ({σ
(n)
i })



 . (27)

Now if we try to find the parameters {gµ} by maximizing this probability (maximum likelihood estimation), we find

0 =
∂ lnP ({σ

(1)
µ , σ

(2)
µ , · · · , σ

(Nsamp)
µ })

∂gµ
= −Nsamp

∂ lnZ({gµ})

∂gµ
−

Nsamp
∑

n=1

Ôµ({σ
(n)
i }) (28)

= Nsamp
∂F ({gµ})

∂gµ
−

Nsamp
∑

n=1

Ôµ({σ
(n)
i }) (29)
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1

Nsamp

Nsamp
∑

n=1

Ôµ({σ
(n)
i }) =

∂F ({gµ})

∂gµ
. (30)

We see that this is the same as Eq (4) if we identify the
“known” expectation values with the averages over our
finite set of samples. Thus, the maximum entropy con-
struction can be viewed as maximum likelihood inference
within a specified class of models, and in this framework
many questions about the consequences of finite sample
size can be seen as part of the more general problem of
learning probabilistic models from data [18, 19].
In a Bayesian framework, we can construct a probabil-

ity distribution for the parameters {gµ} given the data

{σ
(n)
µ }. Exploring this distribution, e.g. by Monte Carlo

in parameter space [20], allows us to assign rigorous
errors to our parameter estimates. More importantly,
within a Bayesian framework we can integrate over pa-
rameters to determine the likelihood that a given class of
models generates the data [21, 22]; this allows us to com-
pare models in which all interactions are possible with
those in which some interactions have been set exactly
to zero. In the context of protein structure, if most inter-
actions can be set to zero then we can envision the cru-
cial amino acids as forming limited networks rather than
being distributed throughout the protein [23, 24]. In
biochemical, genetic and neural networks, setting many
interactions to zero would mean describing these net-
works by a sparsely interconnected graph. It should be
emphasized that the absence of statistically significant
correlations between variables σi and σj does not mean
that there is no interaction between these variables. Al-
though this program has not been carried out in any
of the systems studied thus far, the Bayesian approach
to model selection should provide a rigorous method for
deciding on the number of significant interactions [25].

VI. DISCUSSION

As we collect more and more quantitative data on bi-
ological systems, it becomes increasingly urgent to find
a theoretical framework within which these data can be
understood. In many cases, one approach to this prob-
lem involves writing down a probability distribution that
describes some network of interacting variables:

• In the context of protein evolution, we would like
to write down the probability that any particular
amino acid sequence will arise as a functional pro-
tein in a certain family.

• In the context of neural networks, we would like to
write down the probability that the network will
exhibit any particular pattern of spiking and si-
lence.

• In the context of genetic networks, we would like
to write down the probability that a cell will ex-
hibit any particular combination of gene expression
levels, either under a fixed set of conditions or av-
erages over its lifetime.

One might object that such probabilistic descriptions
are not consistent with the search for a more ‘rule based’
understanding; surely, for example, some sequences form
functional proteins and some do not. Without entering
into a philosophical discussion about whether degrees of
functionality can be mapped into probabilities, we note
that as the systems we are studying become large, our
intuition from statistical mechanics is that the difference
between a description in which states are assigned prob-
abilities (the canonical ensemble) and one in which some
states are allowed and the rest are not (the microcanon-
ical ensemble) becomes vanishingly small. Thus, even if
we start with a probabilistic description, once we think
about proteins with many amino acids or networks con-
structed from many neurons or genes, we expect that
our descriptions will converge to one in which there is a
sharp distinction between allowed and disallowed com-
binations of the underlying variables.
The fact that we are interested in networks with many

variables makes the task of constructing a probabilistic
description quite daunting. With N elements, there are
∼ exp(αN) possible combinations of the underlying vari-
ables, where α typically is of order unity. Obviously no
experiment will exhaustively explore this configuration
space, just as no experiment exhaustively explores the
configuration space of the spins in even a small magnetic
grain. For the magnetic grain, however, there is a limited
set of natural macroscopic variables to measure—such
as the magnetization, specific heat, and susceptibility—
that seem to provide a good characterization of the states
available to the system. Can we hope for some analogous
simplification in the context of biological networks?
Quantities such as the magnetization and susceptibil-

ity can be written as averages over the Boltzmann distri-
bution. More precisely, the magnetization describes the
average behavior of individual spins, and the susceptibil-
ity describes the average behavior of pairs of spins (two–
point correlations). The analogous idea, then, is that
our description of biological systems might be simplified
by focusing on correlations between pairs of elements,
rather than allowing for arbitrarily complex combinato-
rial interactions among many elements. This is precisely
the strategy adopted in recent work on protein sequences
[3, 4, 23] and on networks of real neurons [7, 8]. In each
case, although the focus on pairwise interactions was
implemented differently, the approach was surprisingly
successful, accounting for data far beyond the measured
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correlations. What we have shown here is that the ap-
proaches which arose in different contexts really are the
same, so we have a single strategy for simplifying our
description of biological systems that seems to be work-
ing at very different levels of organization, from single
molecules [3, 4, 23] to biochemical and genetic networks
[14, 15] up to small chunks of the brain [7, 8, 11, 12, 13].
While much remains to be done to test the limits of this
approach, this is a very exciting development.
The annealing approach which was used in the analysis

of protein sequences allows us to generate directly new
samples from the simplified probabilistic model, without
actually constructing the model explicitly. For proteins,
these samples are new molecules that can be synthesized,
and this has been the path to experimental test of the
focus on pairwise correlations. One could imagine using
the same method for neurons to generate new patterns
of spiking and silence in the network, and one could then
check that the higher–order correlations in these patterns
(beyond the pairwise correlations which are matched ex-
actly) agree with experiment.
The explicit construction of the maximum entropy

model, as has been done in the analysis of neurons, al-
lows us to explore the “thermodynamics” of the system.
Questions one can address include whether the space of
configurations breaks into multiple basins, and whether
the parameters of the biological system are in any sense

special, e.g. because they are near a critical point. Per-
haps the most direct question we can address given a
maximum entropy model for the distribution of states
concerns the entropy itself. In the context of neurons,
this entropy sets the capacity for the system to convey
information, whether about the external sensory inputs
or about some internal variables such as memories and
intentions. In the context of proteins, this entropy mea-
sures the number of possible sequences that are consis-
tent with membership in the particular family of func-
tional proteins that we are studying. An explicit model
for the distribution of sequences within a family is also
the proper tool for assessing the likelihood that a pre-
viously uncharacterized protein belongs to this family, a
practical problem of central importance in analyzing the
growing body of sequence data.
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