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Abstract
Statistical analysis of protein sequences indicates an architecture for natural proteins in
which amino acids are engaged in a sparse, hierarchical pattern of interactions in the
tertiary structure. This architecture might be a key and distinguishing feature of evolved
proteins—a design principle providing not only for foldability and high-performance
function but also for robustness to perturbation and the capacity for rapid adaptation
to new selection pressures. Here, we describe an approach for systematically testing this
design principle for natural-like proteins by (1) computational design of synthetic
sequences that gradually add or remove constraints along the hierarchy of interacting
residues and (2) experimental testing of the designed sequences for folding and bio-
chemical function. By this process, we hope to understand how the constraints on fold,
function, and other aspects of fitness are organized within natural proteins, a first step in
understanding the process of “design” by evolution.
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1. INTRODUCTION

Natural proteins can fold under physiological conditions into compact
three-dimensional structures and are capable of remarkably complex and

high-performance biochemical functions. Because these properties require great

accuracy in the position and dynamics of certain amino acids, it is tempting to

think of proteins as precisely engineered systems in which interactions between

the components (amino acids) are finely tuned and exactly arranged throughout

the structure.However,other aspectsofnaturalproteins are inconsistentwith this

view and demand a deeper examination of the basic underlying design principles

through the process of evolution. For example, proteins are typically robust to

random mutation; that is, they tolerate perturbations in many amino acid posi-

tions without much alteration in function (Bowie, Reidhaar-Olson, Lim, &

Sauer, 1990; McLaughlin, Poelwijk, Gosal, & Ranganathan, 2012; Reidhaar-

Olson & Sauer, 1990). In addition, they are plastic; that is, they have the ability

to adapt to changing selection pressures by allowing specific variation of a few

residues to profoundly alter function (McLaughlin et al., 2012; Orencia,

Yoon,Ness,Stemmer,&Stevens,2001).This curiouscombinationof robustness

to random mutation and yet sensitivity to targeted perturbation is interesting

because it suggests that despite the appearance of precise construction through-

out, strong heterogeneity exists in the design of proteins such that some residues

and interactionsbetweenresidues (the“core”machinery) aremuchmore impor-

tant than others. A major current goal in protein biology is to define and then

mechanistically understand this heterogeneous architecture of natural proteins.

What is a good approach for this problem? The first step is to systematically

map the energetic value of amino acid interactions globally in proteins, a non-

trivial task by computational or experimental approaches. The main reasons

are well known: (1) the relationship between the observed structural features

of amino acid interactions and their net energetic value is extremely subtle and

(2) amino acids can interact through complex high-order cooperative groups

that can induce functionally significant energetic couplings between noncon-

tacting amino acids. In general, physics-based approaches to computing pro-

tein energetics are based on making simplifying approximations for these two

issues that result in quasi-empirical potential functions that consider only local

interactions in protein structure. These approximations are necessary to

make the calculations feasible and have led to remarkable successes in the engi-

neering of protein folds (Dahiyat &Mayo, 1997;Dantas, Kuhlman,Callender,

Wong, & Baker, 2003; Harbury, Plecs, Tidor, Alber, & Kim, 1998; Kuhlman
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et al., 2003). Nevertheless, it is important to realize that the design principles

imposed by the approximations made can, in principle, deviate significantly

from the natural evolutionary design of proteins.

The remarkable recent advances in genome sequencing efforts suggest an

alternative statistical approach to this problem. The basic idea is that extant

sequences have been selected through a long process of random mutation

and selection and that a protein family that shares an overall fold and basic

aspects of function should reveal the architecture of key amino acid inter-

actions in the pattern of statistical constraints on and between amino acid

positions. This idea is nothing more than a quantitative generalization of

the widely accepted principle of sequence conservation as a metric of struc-

tural or functional importance. The conjectures are twofold: (1) positions

that are important should experience an evolutionary constraint and should

show a degree of conservation that reflects this constraint and (2) positions

that energetically interact (whether through direct structural interactions or

through indirect pathways of amino acid interactions) should experience a

joint evolutionary constraint and should show correlated conservation or

coevolution. Below, we discuss primarily one quantitative approach based

on these conjectures called the statistical coupling analysis (SCA). For a given

protein family, this analysis yields a mechanistically unbiased global map of

amino acid interactions that encapsulates evolutionary constraints over all

biochemical and biophysical properties that contribute to fitness.

Application of SCA in many protein families has led to a general model

for the architecture of natural proteins—protein structure and function are

hierarchically encoded by a subset of residues (termed the sector) embedded

within the protein. In this chapter, we first give a brief description of our

mathematical approach to sequence analysis and summarize the basic find-

ings of protein sectors. We then describe a design method for testing this

model for natural proteins by the creation of synthetic proteins that explore

the hierarchy of statistical constraints. It is our intent to provide a general

recipe for experiments to investigate how the pattern of amino acid corre-

lations specifies folding, stability, and function in natural proteins.

2. SCA: THE PATTERN OF EVOLUTIONARY CONSTRAINT
IN PROTEINS
The details of SCA have been described elsewhere (Halabi, Rivoire,

Leibler, & Ranganathan, 2009; Smock et al., 2010), but here we give an

overview as a preliminary to describing our design methodology. Matlab
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scripts for performing these calculations in full as well as tutorials illustrating

SCA for several representative protein families are provided on our website

(http://systems.swmed.edu/rr_lab).

2.1. The basic calculations
The process of SCA begins with assembly of a large and diverse multiple

sequence alignment (MSA) for a particular protein family. For example,

consider an MSA comprising 240 sequences of the WW domain family

of small protein interaction modules that bind to proline-containing target

peptides (Fig. 10.1A). The suitability of an MSA for SCA depends on mul-

tiple factors, such as the number of sequences, the sampling of phylogenetic

space, and the general quality of the alignment (lack of large gapped regions,

correct alignment of key functional residues). However, in practice, a gen-

eral (though not strict) guideline for alignment construction is the inclusion

of more than 100 sequences with a mean sequence identity between

sequence pairs in the range of 15–50%.

From the MSA, the first-order analysis is to compute the conservation of

each amino acid a at position i considered independently of other positions.

In SCA, conservation is measured by Di
að Þ, an information-theoretic quan-

tity called the Kullback–Leibler (K–L) relative entropy. This quantity indi-

cates the deviation in the frequency of amino acid a at position i f
ðaÞ
i

� �
from

the background probability of amino acid a (q(a)) estimated from the non-

redundant protein database. In the limit of large sampling (number of

sequences>80; Halabi et al., 2009), this calculation reduces to

Di
að Þ ¼ f

að Þ
i ln

fi
að Þ

q að Þ þ 1� fi
að Þ

� �
ln
1� fi

að Þ

1� q að Þ : ½10:1�

The K–L entropy basically describes how unexpected the observed fre-

quency fi
að Þis, given an expected probability of q(a), and has the following

two properties: (1) Di
að Þ ¼ 0 if fi

að Þ ¼ q að Þ and (2) Di
að Þ increases nonlinearly

more and more steeply as f deviates from q. An overall positional K–L

entropy Di can also be computed that takes into account all the amino acids

per position (Fig. 10.1B, bar graph):

Di ¼
X20
a¼0

fi
að Þln

fi
að Þ

�q að Þ

� �
, ½10:2�

where �q að Þ represents the background frequencies including gaps (Halabi

et al., 2009). For the WW domain, the conservation pattern is as expected;

http://systems.swmed.edu/rr_lab
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Figure 10.1 Statistical coupling analysis (SCA). (A) A portion of the alignment for the WW domain family. Sector (s), cosector (c), or nonsector (unmarked)
positions (defined below) show no obvious arrangement in primary or secondary structure. (B) The site-independent conservation (Di, bar graph) and the
SCA matrix of coevolution between all pairs of amino acids eCij

� �
. Values in the matrix are as indicated by the color bar. (C) Clustering in the matrix reveals

threemain groups of residues: sector, cosector, and nonsector. (D) Comparison of the eigenspectrumof the SCAmatrix generated from the natural alignment
(bars) to eigenspectra for randomized versions of the alignment (line) indicates that just the top two eigenvalues, l1 and l2, are distinguished from noise. (E)
The corresponding eigenvectors reveal the positions that contribute themost to the top eigenvalues and define the sector positions (red) and cosector posi-
tions (blue). (F) The sector shownas red space-filling spheresona representativeWWdomain structure (PDB ID: 2LAW,gray cartoon) in complexwith apeptide
ligand (stick bonds).
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the two positions with the eponymous tryptophan residues (7 and 30) are the

most conserved, together with a proline at position 33 that is a key part of the

protein core. In general, prior work shows that the pattern of positional con-

servation is an effective predictor of residue burial in the tertiary structure

(Halabi et al., 2009).

The second-order analysis is to compute a conservation-weighted cor-

relation matrix eCij

� �
that represents the coevolution of each pair of positions

in theMSA. To do this, we compute the weighted correlation tensor eCij

abð Þ
:

eCij

abð Þ ¼fi
að Þfj

bð ÞCij
abð Þ, ½10:3�

whereCij
abð Þ ¼ fij

abð Þ � fi
að Þfj bð Þ represents the raw frequency-based correlations

between each pair of amino acids (a,b) at each pair of positions (i, j), and f
represents a conservation-basedweighting function. In the current implemen-

tation of SCA, fi
að Þ ¼ @Di

að Þ=@fi að Þ�� ��, the gradient of relative entropy. Just

as Di
að Þ represents positional conservation by the significance of observing a

frequency fi
að Þ given a background expectation, eCij

abð Þ
represents coevolution

by the significance of observing a raw correlation in Cij
abð Þ as judged by the

weighting functions fi
að Þ and fj

bð Þ. Thus, eCij

abð Þ
up-weights correlations

between conserved positions and damps correlations between less conserved

positions. This conservation weighting serves to minimize the contribution

of purely phylogenetic correlations between weakly conserved positions that

are expected to emerge from small clades of sequences that have not had suf-

ficient time to decorrelate unconstrained pairs of sequence positions. Other

weighting functions arepossible andare the subjectof ongoing studies, and they

will not be discussed further here. Regardless, the salient concept is that SCA

considers conservation-weighted correlations between amino acids.

The result of this calculation is a four-dimensional tensor, eCij

abð Þ
, that

contains the correlation of every amino acid pair (a, b) for every position pair

(i, j). For a protein with N positions, the dimensions of eCij
abð Þ

are

N�N�20�20. We then reduce this tensor to an N�N matrix of posi-

tional correlations eCij

� �
by taking the Frobenius norm of each 20�20

amino acid correlation matrix for each amino acid pair:

eCij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
abð Þ

eCðabÞ
ij

� �2
s

: ½10:4�

This matrix norm gives the overall magnitude of correlation between

each pair of positions (i, j) arising through all possible amino acid pairs.eCij is also referred to, in short, as the SCA matrix—a global examination



219Evolution-Based Design of Proteins
of statistical coupling between all pairs of positions in the long-term evolu-

tionary record of a protein family. Figure 10.1B shows eCij for theWW fam-

ily; in this matrix, diagonal elements are related to the intrinsic conservation

of each position, and each off-diagonal element indicates the coevolution

between a pair of amino acid positions.

2.2. Analysis of the SCA positional coevolution matrix
How can we analyze the pattern(s) of amino acid coevolution in the SCA

matrix? Visual examination of eCij for many different protein families leads to

two main observations. First, the pattern of correlations is not obviously

organized with respect to proximity in primary structure or to the pattern

of contacts between secondary structure elements (Fig. 10.1A). Second,

the matrix is remarkably sparse—the majority of amino acids appear to evo-

lve relatively independently (as indicated by the large number of weak cor-

relations in Fig. 10.1B), while a few show strong indications of coevolution.

Clustering of the SCA matrix makes this result more obvious—a subset

of amino acids located in the bottom right corner are strongly coevolving

while the majority of amino acids are more weakly coupled to one another

(Fig. 10.1C). A closer inspection of the clustered matrix suggests a hierarchi-

cal organization of amino acid interactions. The bottom cluster (Fig. 10.1C)

constitutes a small group of residues that collectively coevolve with one

another and the group contains the majority of the signal in the matrix;

we define such a group of residues as a “protein sector.” The middle cluster

(Fig. 10.1C) comprises residues that show little direct coupling to each other

but that show systematic coevolution with sector positions (Fig. 10.1C). As

these positions cluster by association to the sector, we call them the “cos-

ector.” The third and largest set (the nonsector, Fig. 10.1C) shows very little

coupling at all.

Clustering provides one means of examining the pattern of evolutionary

constraints within the matrix, but a more rigorous approach derives from the

principles of spectral decomposition and random matrix theory (Halabi

et al., 2009). The spectral decomposition mathematically transforms a cor-

relation matrix between initial variables (e.g., the SCA matrix of amino acid

correlations) into eigenmodes, which are described by a set of eigenvectors

and eigenvalues. In this representation, each eigenvector contains the

weights for linearly combining the initial variables (e.g., the amino acid posi-

tions) and each associated eigenvalue indicates the quantity of overall vari-

ance captured by that eigenmode. For the SCA matrix, each eigenmode

represents a group of residues that share a similar pattern of coevolution,
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and the eigenvalue spectrum—the histogram of (l1>l2>l3>. . .)—reveals

how the coevolutionary signal is quantitatively distributed among the eigen-

modes. Comparison of this distribution with the eigenvalue spectra of cor-

relation matrices derived from randomized alignments (shown as a line in

Fig. 10.1D) shows that most of the lowest modes are indistinguishable from

noise, while the top few modes capture statistically significant correlations.

For theWWdomain, examination of the eigenvectors associated with the

top two eigenmodes confirms the findings from clustering; a small set of amino

acid positions contribute to the majority of the covariation in the matrix and

emerge along the first eigenmode (the sector) (Fig. 10.1D). Consistent with

coevolution with the sector, the cosector is evident as positions with weaker

weights on the first eigenmode and projection along the second eigenmode

(Fig. 10.1E). Indeed, the sector identified by eigendecomposition corresponds

exactly, in this case, to the set of residues identified by clustering the matrix,

though an exact match between the two methods need not always be true. In

general, the spectral decomposition (rather than clustering) is a more quanti-

tative approach for sector identification and is valuable in the process of

SCA-based protein design, described later.

What is the structural interpretation of the sector? In the WW domain,

the sector forms a sparse, distributed, and physically contiguous network that

is distinct from known classifications of proteins based on primary, second-

ary, and tertiary structure (Russ, Lowery, Mishra, Yaffe, & Ranganathan,

2005; Fig 10.1F). Mutational studies show that sector residues, whether near

or far from the ligand, contribute cooperatively to binding affinity—an

extended network underlying the WW domain function (Russ et al.,

2005). In the PDZ family of protein interaction modules, the sector con-

nects the ligand-binding site to an allosteric site located on the opposite face

(Fig. 10.2A; Halabi et al., 2009; Lockless & Ranganathan, 1999;

McLaughlin et al., 2012). Sectors have been found in all protein families

studied to date, and like inWW and PDZ domains, are empirically observed

to share three properties: they are (1) sparse (comprising�20% of the protein

structure), (2) they are physically contiguous, and (3) they connect the active

site or ligand-binding site to distant surfaces distributed throughout the

structure (Ferguson et al., 2007; Halabi et al., 2009; Hatley, Lockless,

Gibson, Gilman, & Ranganathan, 2003; Lee et al., 2008; Lockless &

Ranganathan, 1999; Shulman, Larson, Mangelsdorf, & Ranganathan,

2004; Smock et al., 2010; Suel, Lockless, Wall, & Ranganathan, 2003).

Interestingly, the mapping of sectors to domains is not necessarily one to

one. Using more advanced extensions of eigendecomposition (Smock et al.,
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2010), it is possible to findmultiple independent sectorswithin a single-domain

protein. For example, in the S1A serine proteases, three near-independent sec-

tors are evident, each of which comprises a distinct but physically contiguous

subnetworkwithin the tertiary structure (Fig. 10.2B). Studies inonememberof

the S1A family (rat trypsin) show that each sector corresponds to a distinct bio-

chemical property—catalytic mechanism, substrate specificity, and stability—

indicating that this decomposition of the protein by patterns of coevolution is
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functionally relevant (Halabi et al., 2009).Conversely, it is also possible to find a

single sector spanning two distinct domains of a protein (e.g., theHsp70 chap-

erone, Fig. 10.2C; Smock et al., 2010). InHsp70, the single interdomain sector

links the ATP-binding site in the nucleotide-binding domain with the ligand-

binding site in the substrate-binding domain through the interdomain inter-

face, a feature that reflects the fact that the conserved functional activity of

Hsp70 proteins is allosteric communication between the two domains. Thus,

sectors expose the architecture of fitness constraints on or between proteins,

independent of structural basis or mechanistic detail.

3. SCA-BASED PROTEIN DESIGN

How can we test the sufficiency of the sector model for protein struc-
ture, function, stability, and adaptability—the basic features of natural pro-

teins? Targeted mutational analyses provide a first-order test that sectors

specify aspects of protein function. But a more global and complete test

comes through synthetic protein design. The idea is to carry out computa-

tional simulations that start with random sequences and evolve (in silico) syn-

thetic sequences that are constrained by the observed evolutionary statistics.

Experimental study of libraries of the designed sequences represents a deep

test of the sufficiency of the applied constraints for recapitulating the prop-

erties of natural proteins.

3.1. Defining an objective function
The approach in SCA-based protein design is to use the Metropolis Monte

Carlo simulated annealing (MCSA) algorithm to explore the sequence space

consistent with a set of applied constraints between amino acids. TheMCSA

algorithm is an iterative numerical method for searching for the global

minimum energy configuration of a system starting from any arbitrary

state and is especially useful when the number of possible states is very large

and the energy landscape is rugged and characterized by many local minima

(Kirkpatrick, Gelatt, & Vecchi, 1983; Metropolis, Rosenbluth, Rosenbluth,

Teller, & Teller, 1953). The energy function (or “objective function”) to be

minimized can, in general, depend on many parameters of the system and

represents the constraints that define the size and shape of the final solution

space. In essence, the objective function can be thought of as the hypothesis

being tested—the set of applied constraints that we wish to test for specifying

folding, thermodynamic stability, function, and any other aspects of protein

fitness.



223Evolution-Based Design of Proteins
For SCA-based protein design, the system under consideration is a MSA

(rather than a single sequence), and the objective function (E) is the summed

difference between the correlation tensor for a MSA of protein sequences

during iterations of the design process and the target correlation matrix

deduced from the natural MSA:

E¼
X
ijab

eCðabÞ
ij designð Þ � eCðabÞ

ij naturalð Þ
��� ���: ½10:5�
Thus, the lowest energy configuration for the designed MSA is the set of

sequences that gives a pattern of correlations in the designed sequenceseCðabÞ
ij designð Þ

� �
that most closely reproduces that of the natural MSAeCðabÞ

ij naturalð Þ
� �

. At the limit of large numbers of sequences, this result is tanta-

mount to drawing sequences from a maximum entropy probability distribu-

tion consistent with the applied set of observed correlations (Bialek &

Ranganathan, 2007).

What correlations should be included in the objective function? At the

extreme limit, the objective function could involve the full correlation ten-

sor in which eCij

abð Þ
has indices i and j that run over all positions in the MSA

and a and b that run over all 20 amino acids; this is a trivial simulation because

the only ensemble of sequences that lies at the global minimum of the objec-

tive function is the same sequences that comprise the natural MSA. How-

ever, a large number of (weak) correlations in the full eCij

abð Þ
are

indistinguishable from noise due to finite sampling or phylogeny and are

therefore proposed to be functionally insignificant. In addition, even the sta-

tistically significant correlations are not likely to be all equally important;

indeed, there is a hierarchy of correlations within the sector such that some

amino acids are more strongly coevolving and are surrounded by residues

making lesser contributions (Fig. 10.1C). The key goal in SCA design is then

is to find appropriate “reduced” objective functions that comprise a hypoth-

esis for the “relevant” constraints and then to test these for sufficiency with

regard to protein structure and function.

Reduced objective functions can be obtained by two general

approaches: (1) elimination (or masking) of correlations in the eCij
abð Þ

tensor

based on heuristic knowledge or on statistical cutoffs on the distribution of

correlations and (2) partial convergence on the full correlation tensor. It is

important to say that these techniques are not entirely different from each

other; indeed, the collective group of correlations defining sectors tend to

be larger in magnitude, and as we will describe below, partial convergence
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by theMCSA algorithm has the property of building in the collective modes

defining sectors at the expense of the weaker, more idiosyncratic correla-

tions. Nevertheless, these strategies represent different practical ways of pos-

ing hypotheses for testing the information content of protein sequences

through design.

For example, in an initial studyonSCA-baseddesignofWWdomains, the

objective function involved a subset of eCij

abð Þ
corresponding to the correla-

tions for only five sector residues—a test that the correlations between just

these few specific positions and all other sites is sufficient for protein folding

and function (Russ et al., 2005; Socolich et al., 2005).However, other objec-

tive functions might be imagined; for example, for multisector proteins such

as the S1A serine proteases, one can envision designs that target only the

correlations that define a single protein sector—a design that should cause

variation in one functional property while leaving the roles of other sectors

relatively unperturbed. More generally, it would be interesting to test objec-

tive functions that sample different eigenmodes of the SCAcorrelationmatrix

to experimentally understand if and how the spectral decomposition of

information content in protein sequences corresponds to a decomposition

of the different biochemical properties of proteins that contribute to fitness.

3.2. The simulated annealing algorithm
Given an objective function, the strategy of the MCSA algorithm underly-

ing SCA-based design follows the standard simulated annealing process. We

initiate the simulation with an alignment that has been randomized by a pro-

cess we term “vertical shuffling”—randomly permuting each column of the

MSA independently. Vertical shuffling removes all nonrandom correlations

between positions, but by nature, preserves the frequency distribution (i.e.,

the conservation) of amino acids at positions exactly. The MCSA method

then involves many iterations of a two-step process to converge on the set

of constraints specified by the objective function. In step one, we choose

one position and two sequences from the MSA at random and swap the

corresponding amino acids (Fig. 10.3A). Since the swap is always done

within one position, this perturbation never influences the independent

conservation of positions, but it could introduce a change to the pattern

of correlations. In step 2, we evaluate the objective function (E) to give

the impact of the swap on the overall set of included correlations and com-

pute DE¼Ecurrent�Eprevious, the change in the objective function from the

previous iteration. IfDE�0, the perturbation is favorable (i.e., the pattern of

correlations has become more natural-like), and we always accept the swap.
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accept or reject the swap based on the difference in the objective function (DE, see text)
and a computational “temperature” (T). IfDE>0, the swap is accepted with a probability
determined by the Boltzmann distribution. (B) A MCSA trajectory for the WW domain
family. The process starts with a high temperature and exponentially cools the MSA,
converging toward a minimum for the objective function. (C) In Socolich et al.
(2005), the objective function involved correlations for five sector positions. This portion
of the SCA matrix (with self-correlations blanked) is shown for the natural WW align-
ment, the vertically shuffled (high temperature) alignment, and the annealed align-
ment. At right is indicated the average sequence identity (� SD) to the closest
sequence in the natural WW domain MSA. (D) Comparison of experimental structures
for a collection of natural WW domains and one of the synthetic WW domains. The
eponymous tryptophan residues are indicated in stick bonds.
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If DE>0, the perturbation is unfavorable, and we accept the swap with a

probability given by the Boltzmann distribution:

p¼ e
�DE
T : ½10:6�

This property of MCSA—in which unfavorable swaps are probabilisti-

cally accepted—is a key feature that prevents the search algorithm from
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becoming trapped in local minima. The “temperature” factor T is a purely

computational term that controls the probability of accepting unfavorable

swaps. At high temperatures, swaps causing even significant perturbation

to correlations are likely, while at low temperatures such swaps become

exponentially less probable. The basic idea of the MCSA is to gradually cool

the MSA from a high temperature along a near-equilibrium path until the

simulation converges on a set of synthetic sequences that reproduces the cor-

relations included in the objective function (Fig. 10.3B). It can be intuitively

seen that in the path of an MCSA simulation, the strongest collectively

evolving modes of the correlationmatrix (that define sectors) will anneal first

and cooperatively over a narrow range of temperatures, with the remainder

of the weaker and less collective correlations converging gradually as the

temperature cools further. The simulation exits when the temperature cools

sufficiently that no further swaps are accepted.
3.3. SCA-based design of WW domains
The first application of protein design using evolutionary correlations was

carried out for the WW family of protein interaction modules (Russ

et al., 2005; Socolich et al., 2005). The WW domain adopts a curved,

three-stranded antiparallel b-sheet configuration and binds to proline-rich

peptide ligands along one face of the sheet (Fig. 10.1F). As mentioned ear-

lier, the objective function in this initial design experiment involved amatrix

comprising just the correlations between one dominant amino acid at five

sector positions and all amino acids at all other positions—a heuristic choice

based on the fact that these correlations capture much of the total informa-

tion content in the SCA matrix for the WW family. Starting from the ver-

tically shuffled MSA as the initial state (IC, or site-independent conservation

sequences), the MCSA algorithm was used to converge on new MSA of

sequences (CC, or “coupled conservation” sequences) that recapitulate the

applied constraints (i.e., minimizing the objective function, Fig. 10.3B–C).

Four libraries of synthetic genes were constructed and analyzed to exper-

imentally test the likelihood of native folding and function in SCA-based

design: (1) 48 natural WW domains drawn randomly from the natural

MSA (as a positive control), (2) 48 IC sequences that represent the input

for MCSA, (3) 48 CC sequences that represent the output of MCSA, and

(4) 23 completely random sequences (R) with amino acids at each position

chosen from the mean frequency of each amino acid in the WWMSA (as a

negative control). Statistically, the natural, IC, and CC sequences showed a
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mean amino acid identity to natural WW domains of �36%, an expected

result given the constraint to preserve the conservation of amino acids at

sites. Also expected, the random sequences show a much lower mean iden-

tity to natural WW domains (�6%). However, the IC and CC sequences

show a similar “top-hit” identity on average with natural sequences—the

percent identity to their closest counterpart in the natural world

(Fig. 10.3C). Thus, the CC sequences are statistically indistinguishable in

sequence divergence from IC domains indicating that, by this measure,

the number of extra constraints from correlations is small. In essence, the

difference between IC and CC sequences is not the magnitude of similarity

to natural sequences but the pattern by which they are similar.

Analysis of solubility, folding thermodynamics, and ligand-binding spec-

ificity for all soluble domains showed a clear result: no random or IC

sequences were folded, but a significant fraction of CC sequences showed

both native folding and biochemical function that quantitatively recapitu-

lated the behavior of natural WW proteins (Socolich et al., 2005). In addi-

tion, structure determination of one synthetic CC domain demonstrated

recapitulation of the characteristic tertiary structure of the WW domain,

with an atomic-level accuracy that is within the variance of known natural

WW structures (Fig. 10.3D). Thus, for this domain, fold and function can be

recapitulated by the information contained in the portion of the SCAmatrix

that contains the pairwise correlations for a set of sector positions. This

experiment provides a first test that the pattern of amino acid coevolution

in the SCA matrix represents one solution for specifying natively folded

and functional proteins. The small fraction of total correlations used in

the objective function implies a surprising simplicity in the evolutionary

design of this protein domain.

4. SCA-BASED PARSING OF PROTEIN STABILITY
AND FUNCTION
The objective function used in the initial design of WW domains

included the correlations for five sector positions over all other positions.

The near-sufficiency of this design is interesting, but this experiment does

not decompose the contribution of sector and nonsector positions. Indeed,

does the hierarchy of correlations differentially encode properties of protein

folding and function? To examine this, let us revisit the clustered matrix for

the WW domain family (Fig. 10.1C). This matrix shows a hierarchical pat-

tern of organization with three groups of residues identified by clustering:
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sector, cosector, and nonsector. To understand how this organization

encodes protein stability and function, we conducted a simple “positional

shuffling” experiment on the WW domain sequence alignment

(Fig. 10.4A–E). In this experiment, we designed synthetic variants of one

WW domain sequence within the overall MSA (the second WW domain

from the Yes-kinase associated protein 1 (YAP-1), referred to as N46;

Socolich et al., 2005) in which statistical couplings are systematically elim-

inated for sector, cosector, and nonsector groups, either alone or in combi-

nation. To do this, we simply vertically shuffle the amino acids

independently at each position comprising a group and select the N46 var-

iant. As described in Section 3.2, this process removes all nonrandom cor-

relations between positions comprising a selected group(s) while preserving

the conservation of amino acids at individual sites (Fig. 10.4E).

In total, we generated four sets of 20 shuffled N46 sequences each (80

total proteins), which are named according to the residue clusters in which

correlations were retained: N46(1)—sector intact, all other positions shuf-

fled (Fig 10.4A); N46(1þ2)—sector/cosector intact, nonsector positions

shuffled (Fig 10.4B); N46(2þ3)—cosector/nonsector intact, sector posi-

tions shuffled (Fig 10.4C); and N46(3)—nonsector intact, sector, and cos-

ector positions shuffled (Fig 10.4D). All the synthetic shuffled sequences

were characterized for three properties: solubility upon expression in

Escherichia coli, presence of a cooperative unfolding transition by thermal

denaturation (Socolich et al., 2005), and function as assessed by class-specific

peptide binding (Russ et al., 2005). N46 is a class I WW domain, recogniz-

ing PPxY containing target peptides; accordingly, functional synthetic WW

domains were scored as those that recapitulate this same binding specificity.

The results of these experiments are summarized in Fig. 10.4F and G.

First, the data show that for all four sequence sets only a small number of

domains are insoluble (gray wedges), leaving the majority for analysis of fold

stability and function. Second, both the necessity and near-sufficiency of the

sector/cosector for N46-like class I binding specificity are evident. Shuffling

the sector positions (N46(2þ3)) results in only one of 16 tested domains

with class I specificity, and shuffling of both the sector and cosector positions

(N46(3)) results in a total loss of function for all domains (Fig. 10.4G). In

contrast, preserving only the eight sector residues and shuffling the remain-

der (N46(1)) results in 5 of 16 functional domains, and retaining both the

sector and the cosector (N46(1þ2)) results in 16 of 18 class I domains

(Fig. 10.4G). Thus, protein function in the WW domain largely emerges

from the sparse network of amino acid positions that define the sector.
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Interestingly, fold stability seems to obey a different rule. Regardless of

whether one shuffles only the sector positions (N46(2þ3)), the sector

and cosector positions (N46(3)), or nonsector positions (N46(1þ2)), the

results are the same: 30–50% of the resulting domains display a cooperative

folding transition in the 4–90 �C temperature range (Fig. 10.4F). Taken

together, these findings suggest that the capacity to fold and exhibit specific

molecular recognition is localized to the subset of positions showing coevo-

lution (the sector/cosector), while the stability of the fold is a more distrib-

uted property of the protein structure, even involving weakly correlated and

less conserved positions.

From an evolutionary perspective, this suggests the possibility that the

amino acid interactions underlying thermodynamic stability need not be

deeply conserved in protein families, but rather can be easily varied. That

is, the origin of thermodynamic stability in any particular member of a pro-

tein family may be a rapidly changing and perhaps even idiosyncratic feature

emerging from small local groups of amino acids with many degenerate

possible solutions. The generality and validity of this apparent parsing of fold

stability and function should be more deeply examined in larger and more

stable proteins and with greater sampling of synthetic designs.

5. FUTURE MONTE CARLO STRATEGIES FOR EXPLORING
SEQUENCE SPACE
The experiments described above provide a simple coarse-grained

preview of how properties of protein folding and functionmight be encoded

in the hierarchy of positional correlations. But, to examine the pattern of

residue couplings with greater resolution and less interpretational bias

(i.e., without heuristically defined objective functions and parsing of

correlations into discrete blocks such as sector and cosector), we need a

way to systematically add or remove correlations along the hierarchy. Here,

we describe a strategy to address this question. Implementing this method

requires three things: (1) a computational method to design protein

sequences that smoothly vary couplings along a hierarchy observed in the

SCA matrix, (2) a way to synthesize genes corresponding to a large number

of synthetic proteins along this trajectory cheaply and reliably, and (3) high-

throughput methods to assess protein function for the libraries of synthetic

designs. The methods for assessing protein function are specific for model

systems and are not discussed here, but they should be generally possible

for any protein in which cell growth rate or fitness can be coupled to protein
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activity. For example, proteins such as primary metabolic enzymes

(Reynolds, McLaughlin, & Ranganathan, 2011; Taylor, Kast, & Hilvert,

2001) or enzymes that mediate antibiotic resistance (Weinreich, Delaney,

Depristo, & Hartl, 2006) have obvious advantages in this respect. These

experiments are likely to become feasible as advances in technologies for

gene synthesis and automated screening for protein stability and function

mature (Gerber, Maerkl, & Quake, 2009; Isom, Marguet, Oas, &

Hellinga, 2011; Kosuri et al., 2010).

The computational approach is to design sequences as a function of tem-

perature along a Monte Carlo trajectory (i.e., obeying Eq. 10.5), systemat-

ically testing for loss (in the case of heating) or gain (in the case of cooling) of

protein properties of interest. The cooling trajectory is as described above in

Section 3.2—we begin with a vertically shuffled alignment and lower the

temperature along a near-equilibrium path to converge on our objective

function. The result is an ensemble of sequences that can be characterized

at each temperature. Constraints between residues anneal as a function of

temperature according to their strength and collective character and thus this

design has the property of building the top eigenmodes (defining sectors)

first and then slowly annealing on the lower eigenmodes containing weaker

and less collective correlations. A dense sampling of sequences along this tra-

jectory would provide a rigorous test of how the statistical structure of cor-

relations is related to various protein properties.

MonteCarlo simulated heating (MCSH) is conceptually similar toMCSA

but differs in initial condition and direction of progress (Fig. 10.5A). In this

experiment, we begin with a MSA of natural sequences (rather than a verti-

cally shuffled MSA) and conduct a simulation while raising the temperature

according to a specified heating schedule until the alignment is completely

vertically shuffled. In effect, this is a strategy for computationally introducing

mutations in natural sequences constrained by the positional conservation of

amino acids and according to a pattern specified by the objective function and

the heating protocol. For example, consider the heating trajectories in

Fig. 10.5A for an MSA of 240 members of the PDZ family of protein inter-

action modules. The objective function is the full eCij

ðabÞ
correlation tensor,

and we show two trajectories differing by heating protocol starting from the

MSAof natural sequences (markedN, Fig. 10.5A). Carrying out a simulation

with the temperature set to infinity defines a path in which all positions

mutate within their conservation pattern without regard to correlations

(see Eq. 10.6), finally approaching the fully randomized, vertically shuffled

limit (marked R, Fig. 10.5A). Accordingly, both global and sector identity
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to the natural sequences are lost equally, and sequences at the positionmarked

C1 show a pattern of correlation for sector positions that is nearly randomized

(Fig. 10.5B). In contrast, slow near-equilibrium heating produces a very dif-

ferent trajectory; in this process, global identity is initially lost without much

loss in sector identity until a characteristic temperature at which the sector

“melts” and the trajectory approaches the same fully vertically shuffled limit.

Accordingly, sequences at the position marked C2 have a pattern of correla-

tions for sector positions that is nearly the same as for natural sequences,

despite the same global divergence as C1 sequences (Fig. 10.5B).

An interesting experiment is to choose one natural sequence within the

MSA as a model system, carry out many trials of MCSH, and build versions

of this protein at different temperatures along the trajectories. Experimental

characterization of the natural sequence is a specific reference for folding,

stability, and function in the synthetic “heated” sequences. Study of ensem-

bles of synthetic variants sampled along the two different heating trajectories

should provide a clear answer to how these properties of the selected natural

sequence differentially diverge as a function of systematically removing the

information contained in the SCA correlation tensor.

Both MCSA and MCSH methods provide a means to explore the

mapping between statistical correlations and protein structure/function, a

mapping that deserves study in several protein systems. Indeed, it will be

important to see how the results compare for small versus large domains

and for enzymes versus more simple binding proteins.
Figure 10.5 MCSH trajectories for the PDZ domain family. (A) A plot mapping the pro-
gress of two different heating trajectories against the average “top-hit” sequence iden-
tities of designed sequences calculated for the full-length sequence (<id>global) or for
just sector positions (< id>sector). In the T¼ Inf trajectory, each position is allowed to
mutate within its conservation pattern without regard to correlations, and global and
sector identity drop together. In the slow heating trajectory, the temperature is gradu-
ally increased to “melt out” couplings between positions in an order that depends on
the strength and collective nature of the correlations. The value of the objective func-
tion along the trajectories is indicated by the color bar, and four points are marked for
reference with panel B: N, the natural MSA; R, the fully randomized, vertically shuffled
MSA; and C1 and C2, two intermediary points that share the same global sequence diver-
gence but differ significantly in sector divergence. (B) Subset of the SCA matrix eCij for
15 sector positions in the PDZ family to illustrate the property of the heating trajectories.
Despite identical global sequence divergence, C1 sequences show a pattern of correla-
tions that nearly approaches the fully randomized case while C2 sequences show cor-
relations that are nearly the same as for the natural MSA. Experimental analysis of C2 and
C1 sequences or more generally sequences drawn from both trajectories represent a
systematic investigation of how properties of natural proteins are stored in the pattern
of correlations.
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6. CONCLUSION

Protein design represents one approach for understanding how the
pattern of pairwise residue couplings inferred from the statistics of natural

protein sequences is related to the encoding of protein structure and func-

tion. Further, it may provide insight into decomposability of biochemical

properties. In cases such as the S1A serine proteases, the finding of multiple

statistically independent sectors offers the exciting possibility of orthogonal

control of different biochemical properties of these enzymes. More gener-

ally, it may be that a broad study of the Monte Carlo-based design trajecto-

ries for proteins will reveal rules for tuning stability and function

independently through targeted variation of protein sequences. The

methods described here present one approach to distill the general princi-

ples, if any, for the design of natural proteins. Practically, such rules might

permit the design of improved synthetic proteins that show natural-like

properties of high catalytic efficiency, mutational robustness, and adaptabil-

ity to new functional challenges.
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